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1 Introduction 

This guidance describes a process for the Idaho Department of Environmental Quality (DEQ) to 

use when determining if ground water quality is degraded. The term degradation is defined in 

the Idaho “Ground Water Quality Rule” (IDAPA 58.01.11) as “the lowering of ground water 

quality as measured in a statistically significant and reproducible manner.” This guidance 

provides a process and statistical tools, which can be used to determine statistically significant 

degradation. Other processes and statistical tools may be used; this guidance describes process 

and tools that are understood to achieve the intended goals. 

The two principal goals of the guidance are as follows:  

1. Describe a statistically based process for establishing background ground water 

quality.  

2. Identify methods and criteria for identifying when ground water quality degradation 

is statistically significant.  

An understanding of these two concepts is fundamental to addressing ground water quality 

issues. Knowledge of the background ground water quality is necessary before ground water 

quality degradation can be identified. Once background ground water quality is established, 

ground water quality degradation, if any, can be determined.  

To achieve the two principal goals, the guidance is structured around the following four 

objectives:  

1. Provide a standardized framework or process to objectively evaluate ground water 

quality data. 

2. Provide flexibility to address site-specific conditions.  

3. Provide a decision tree showing elements required to complete suggested parts of the 

process. 

4. Suggest certain statistical tools but allow for alternatives. 

Some suggested tools are presented in Appendices A to N (see specific topics in Table of 

Contents). Appendix O provides definitions of terminology used throughout the document. A 

summary of the revisions contained in this version of the guidance are identified in Appendix P. 

The determination of what constitutes degraded ground water is essential for implementing DEQ 

programs that rely on the IDAPA 58.01.11 to protect the health of Idahoans and the environment. 

DEQ and the regulated community can use the methods contained in this document to estimate 

background ground water quality conditions and identify any degradation. This guidance 

document is intended to help interpret and apply IDAPA 58.01.11 at sites not addressed with 

existing state and federal program guidance. It may also complement existing guidance by 

addressing situations not covered with other guidance. This document does not impose legally 

binding requirements on DEQ or the regulated community. The document identifies an approach 

for defining ground water degradation, but DEQ retains the discretion to allow different 

approaches on a case-by-case basis that differ from this information. Interested parties are free to 

raise questions about the appropriateness of the application of the information in this document 

to a particular situation, and DEQ will consider whether or not the technical approaches are 

appropriate in that situation.  
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Once a constituent is detected in ground water, IDAPA 58.01.11 provides a process for DEQ to 

follow (Figure 1). Figure 1 illustrates the conceptual approach to implementing IDAPA 58.01.11. 
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Figure 1. Implementation of Idaho’s “Ground Water Quality Rule” IDAPA 58.01.11.400. 

The first step, following a detection, is to determine if the constituent concentration is greater 

than background. (This step is shown in diamond 1 and circled in red). This guidance document 

addresses this step by providing a process that can be used to determine if a detection represents 

statistically significant degradation. For ground water to be degraded, the concentration 

must be above background and the degradation must be of statistical significance. If ground 

water is not degraded, then no further action is necessary. If ground water is degraded, but the 

constituent is present in a concentration below a ground water quality standard, DEQ must make 

a determination of whether the degradation is of regulatory significance; this step is shown in 

diamond 2.  

This statistical guidance document does not address whether degradation is of regulatory 

significance. The criteria for determining regulatory significance are contained in IDAPA 

58.01.11.400.02.b. and include the following: 

 Site-specific hydrogeologic conditions 

 Water quality, including seasonal variations 

 Existing and projected future beneficial uses 

 Related public health issues 



Statistical Guidance for Determining Background Ground Water Quality and Degradation 

3 

 Whether degradation involves a primary or secondary constituent in IDAPA 

58.01.11.200. 

Additional guidance, using the criteria listed above, is being developed by DEQ to determine 

whether degradation that is of statistical significance is also of regulatory significance.  

The following example illustrates the purpose of this guidance. 

Using the approach described in this guidance, background ground water nitrate 

concentration at a site is determined statistically to be 5.0 milligrams per liter (mg/L). 

Downgradient of the site, the nitrate concentration in ground water is found to increase 

from 5.0 mg/L to 5.5 mg/L. Verification sampling confirms the downgradient nitrate 

concentration exceeds the background level. These results indicate the degradation is of 

statistical significance and the ground water is degraded for nitrate (diamond 1 in Figure 

1). Guidance regarding actions to address the degradation is beyond the scope of this 

guidance. 

Because the ground water is degraded, but the concentration is below a ground water 

quality standard (in this case, 10.0 mg/L), a determination of whether the degradation is 

of regulatory significance must be made (diamond 2 in Figure 1).  

This statistical guidance does not provide a method for quantifying the magnitude of 

degradation. Statistics can be used to define the statistical uncertainty between sample values 

collected in different wells. But statistics cannot be expected to define the magnitude of the 

difference. Statistics can never prove that a difference between sample values is real, only the 

probability that one may exist, given the available data. Whether degradation is of regulatory 

significance is dealt with in another guidance document currently being developed by DEQ. 

2 Authorities and Definitions 

The legislation and rules addressing ground water quality issues in Idaho include the Idaho 

Ground Water Quality Protection Act of 1989 (Act) (Idaho Code §39-120 to §39-127) and the 

Idaho “Ground Water Quality Rule” (IDAPA 58.01.11). The Act created the Ground Water 

Quality Council and directed the council to develop the Ground Water Quality Plan (plan). The 

plan provides the overall direction and policies of the state with respect to ground water quality 

concerns. IDAPA 58.01.11 implements a portion of the plan.  

Background ground water quality can be established using samples collected from monitoring 

wells that sample the ambient ground water quality in the same aquifer that is likely to be 

impacted by development. IDAPA 58.01.11 identifies two types of background ground water 

quality: natural and site.  

Natural background level is defined by IDAPA 58.01.11 “as the level of any constituent in the 

ground water within a specified area as determined by representative measurements of the 

ground water quality unaffected by human activities.” In areas where the natural background 

level of a constituent exceeds the standard, the natural background level shall be used as the 

standard.  
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Site background level is defined as the ground water quality at the hydraulically upgradient site 

boundary. In areas where the ground water quality is unaffected by human activities, the site 

background level is equivalent to natural background.  

3 Statistical Characterization of Ground Water Quality  

Before any data evaluation begins, it is useful to have a clear understanding of the issues that 

need to be addressed, including the constituents of concern (COCs). Once the main issues are 

defined, the data can be collected and then reviewed within the appropriate context. Existing data 

must be compiled and evaluated to determine if the information is sufficient to adequately 

characterize the ground water quality. In most cases, the goal of the statistical analysis will be to 

characterize background ground water quality in a manner such that decisions regarding ground 

water quality degradation are defensible. 

The guidance provides flexibility by allowing options to determine background ground water 

quality, depending on the adequacy of the data for statistical analysis. If sufficient data are 

available to statistically characterize background ground water quality, then appropriate 

statistical methods may be employed. The determination of data adequacy is a site-specific 

decision that depends on many physical factors as well as the objectives of the project. Suggested 

methods to determine if the available ground water quality data are adequate to conduct valid 

statistical analyses are described in the appendices. 

If data are not adequate to conduct valid statistical analyses, then a sampling plan to collect 

adequate data may be developed or background ground water quality may be estimated using an 

alternative concentration limit (ACL) in accordance with a DEQ-defined method. The ACL is 

designed to be protective of ground water quality by using the lowest value provided from three 

options as described in Appendix A. If a sampling plan is implemented, the ACL will be used for 

decision-making purposes until adequate data are collected to support valid statistical analyses. 

However, an ACL also may be selected even when appropriate data are available for valid 

statistical analyses if the interested party does not want to conduct statistical analyses and DEQ 

concurs with the decision.  

3.1 Elements of an Analysis 

The elements for characterizing background ground water quality are site-specific and dependent 

on the complexity of the area. If the process described in this guidance is used, the steps to be 

completed for each site include the following: 

 State the objectives of the analysis. 

 Delineate the study area and hydrogeologic features relevant to monitoring. 

 Identify COCs and provide rationale for considering them. 

 Evaluate and define data adequacy in the context of the analysis objectives. 

 Identify appropriate statistical tools to address the issues. 

 If the data are inadequate for the analysis, determine an appropriate temporal scale for the 

data collection program and provide a rationale for why it is appropriate. 

 If selected data are used in (or excluded from) the analysis, provide a rationale. 
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The elements must be addressed within the context of the hydrogeologic framework. Individual 

aquifers must be defined at the appropriate scale. For each aquifer, the ground water flow 

direction and ground water gradient should be described and uncertainties in both should be 

estimated. Data on the ground water chemistry of each aquifer should be compiled and ground 

water quality trends should be identified, if data are sufficient. The sampling locations and 

sampling frequency should be evaluated to ascertain whether results can be used to represent the 

ground water quality within the area of concern.  

The general process for defining background ground water quality is illustrated in the flow 

diagram in Figure 2. 

Analysis Tools and Documentation 

One of the principal goals of this guidance document is to help users navigate the array of 

statistical procedures, choices, and theoretical options that are available during the analysis of 

ground water quality data. By making the process more transparent, DEQ hopes to minimize 

analysis problems and decision errors and thereby streamline the review of users’ data analysis 

results. One of the keys to success in this endeavor is that users submit sufficient relevant 

documentation with their analysis results to allow DEQ’s technical review to proceed as 

smoothly as possible. 

Data Submission 

All water quality data considered in the statistical analysis must be provided to DEQ in digital 

spreadsheet form together with any relevant documentation necessary to understand the data 

structure, data fields, and analytical details (e.g., concentration units and detection limits). 

Analysis Methodology and Tools 

To facilitate the evaluation of the user’s statistical analysis, clear documentation is required of 

the type(s) of software used in the analysis, including version number(s) and relevant 

information on the software source and publisher. The use of nonstandard methodologies should 

be avoided to minimize interpretational problems or inappropriate conclusions. All software 

should be well documented and widely accepted in the ground water profession as to its utility in 

the kind of statistical analyses covered in this guidance document. 

The United States Environmental Protection Agency’s (EPA’s) ProUCL v.5.0 (EPA 2006; 

2013a) statistical software is a good example of acceptable software due to its ease of use, 

excellent documentation, wide acceptance, and free availability. The software is available for 

download at http://www.epa.gov/osp/hstl/tsc/software.htm; it is easy to install and includes many 

of the analysis tools described in this guidance document. Examples of its application are 

provided in many of the appendices herein. 

http://www.epa.gov/osp/hstl/tsc/software.htm
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Figure 2. Process for determining background ground water quality. 
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3.2 Evaluation of Hydrogeologic Data 

When defining background water quality or making comparisons against a compliance threshold, 

one of the first and most critical requirements is a clear and hydrogeologically defensible 

conceptual model of the site’s subsurface architecture. Depending on the site, different statistical 

populations of ground water quality may occur at different aquifer depths and in different aquifer 

media. An adequate amount of water quality data is required for each subpopulation so it is 

statistically representative of the strata, sample depths, or other characteristics that may affect 

water quality differently. In such cases, background water quality may have to be defined 

separately for several subpopulations, and future comparisons with background may then have to 

be conducted with the same consideration in mind so that any statistical conclusions are 

hydrogeologically defensible in the context of the site conceptual model.  

Ambient ground water quality typically varies spatially (between wells) and temporally (over 

time) due to natural conditions; anthropogenic impacts can contribute additional variability to 

water quality. A minimum of one upgradient well is needed to determine background ground 

water quality, but additional upgradient wells may be necessary to characterize site variability in 

complex hydrogeological situations (Fisher and Potter 1989; Cressie 1993; Gibbons 1994). At 

so-called green fields sites where human activities have not affected site water quality, both 

upgradient and downgradient wells can be used initially to determine background ground water 

quality and spatial variability. 

The hydrogeologic characteristics of a site determine the number of ground water monitoring 

wells required and their locations. The depth to water, flow direction, net recharge rate, aquifer 

and soil characteristics, topography, thickness and lithology of the vadose zone, and hydraulic 

conductivity of the aquifer are all important in determining the vulnerability of an aquifer and the 

necessary spacing and depth of monitoring wells (Ogden 1987). The geology of a site should be 

characterized with data from well logs, geologic maps, and cross sections. Structural features, 

such as faults, fractures, fissures, impermeable boundaries or other features that can influence 

flow direction should be delineated. Additional hydrogeologic information relevant to assessing 

the adequacy of monitoring data should be summarized, including but not limited to ground 

water flow velocity, transmissivity, storage coefficient, porosity, and dispersivity. 

3.3 Defining Constituents of Concern 

A COC is a chemical that is disturbed, generated, used, or disposed at the site in sufficient 

quantity to pose a risk to beneficial uses of ground water or interconnected surface water. This 

includes degradation products or chemicals released during chemical reactions in the 

environment. COCs defined for each site will depend on site operations. When deciding what 

chemicals may be COCs, the following should be carefully considered:  

 Industrial/commercial processes resulting in the generation of the chemical(s) that are 

permitted to be handled, stored, or reused (land-applied) on the site 

 Physical and chemical properties of the chemical(s) 

 Complexity and sensitivity of the hydrogeologic environment 

Once a COC is determined the following should be considered: 



Statistical Guidance for Determining Background Ground Water Quality and Degradation 

8 

 Methods of sample collection, handling, and transportation that are appropriate for the 

COC 

 Laboratory analysis procedures used to measure chemical concentration that are 

appropriate for the COC 

3.4 Adequate Sample Size 

This section specifically addresses quantifiable measurements above the detection limit not 

affected by censoring. Procedures for dealing with censored data are discussed in section 3.5. 

The quality and quantity of available monitoring data are two of the most important factors in 

determining background ground water quality for a COC. Individual ground water samples are 

only representative of ground water quality at a particular time in a particular location. Ground 

water quality often varies seasonally or changes with time and/or location, so a single ground 

water sample may not be representative of ground water conditions throughout the site or over a 

period of time. The greater the number of independent samples collected over time, the more 

representative the characterization of the ground water quality. Larger sample populations also 

increase the statistical confidence in the evaluation of ground water quality. Valid statistical 

testing depends upon collection of adequate data. Statistical tests rely on using estimates of the 

true mean and true variance of a population. For example, the estimate of the true mean is the 

average of the data points collected. The estimate of the true standard deviation is the standard 

deviation of the data points collected.  

The number of samples needed to conduct a statistical analysis meeting the objectives and goals 

of a project depends on the site-specific conditions, which in turn controls the data variability. 

Site-specific conditions may include physical factors such as land use, hydrogeologic 

environment, and seasonality and social considerations. The EPA’s Unified Guidance document 

(EPA 2009) recommends that a minimum of 8 to 10 independent samples be available to 

estimate the standard deviation of a parametrically distributed statistical population (e.g., normal, 

gamma or lognormal distributions). DEQ recommends collecting 12 independent samples for 

most statistical analysis methods discussed in this guidance document. In stark contrast, a 

tolerance interval estimate for a nonparametric distribution requires a minimum of 59 

independent data points to achieve 95% coverage
*
 at 95% confidence (Conover 1999; EPA 

2009; Gibbons 1994).  

In other situations, such as the presence of a seasonal trend, the Seasonal Kendall Test requires a 

minimum of 3 years of monthly data, or 36 data points (Gilbert 1987). When quarterly data are 

sparse, the Kruskal-Wallis test can be used as long as there are at least 3 years of quarterly data 

collected in the same months (a minimum of 12 independent data points). To quantify serial 

correlation effects (temporal dependence), Harris et al. (1987) state that at least 10 years of 

quarterly data, or 40 data points, may be necessary.  

As illustrated in the previous paragraphs, adequate sample size varies on a case-by-case basis 

and is a site-specific decision that must consider factors unique to each project and site. The goal 

of determining sample size in a statistical study is to find the number of samples that provides 

                                                 

*
 where 95% of future samples will fall within the interval 



Statistical Guidance for Determining Background Ground Water Quality and Degradation 

9 

adequate yet practically feasible evidence with which meaningful conclusions can be made 

relative to the goals of the study. The final determination of what constitutes adequate sample 

size will be made by DEQ in cooperation with the regulated entity. 

Limited Annual Sampling 

In some cases, quarterly or more frequent sample data may not be available throughout the year. 

For example, at sites with limited or no access during winter and early spring, regular year-round 

sampling may not be physically possible. In such situations, DEQ may modify the quarterly 

sampling requirement to provide for adequate data coverage during the portion of the year when 

sampling is possible as well as some of the statistical analysis procedures pertaining to quarterly 

samples discussed in this document. 

In the event that year-round sampling is not possible, then quarterly samples in this document 

shall be interpreted to comprise four or more evenly spaced sampling events during the annual 

sampling window. For example, if sampling is possible only during the 8-month period from 

April through November, then four samples should be collected, one every other month, at each 

well.  

This strategy maintains sufficient temporal data coverage and minimum sample sizes for 

determination of background and seasonality. In most cases, depending on data independence 

considerations, it would allow for timely verification resampling of wells discovered to be out of 

compliance during approximately the first 5 months of the annual sampling window. Wells 

deemed to be out of compliance after September may not be testable again until the following 

spring. In such cases, particular care needs to be taken to ensure that appropriate seasonality 

adjustments can be applied so that comparisons between fall and springs samples are statistically 

defensible. 

3.5 Data Below Detection Limits 

Data sets that contain nondetect values make it more difficult to determine the type of statistical 

distribution that characterizes the population from which samples are drawn. These data sets are 

referred to as censored data throughout the remainder of this guidance. For most nonparametric 

methods, the presence of censored data is not an issue, but their effect in parametric analysis is 

very dependent on the statistical form of the data distribution (EPA 2009). The procedure to 

evaluate censored data is outlined in Figure 3 and conforms to recommendations in EPA’s 

Unified Guidance (EPA 2009), as well as Gibbons (1994) and Helsel (1990; 2005). 

The first step when evaluating censored data is to distinguish between detection-only 

applications (such as identifying the first arrival of a constituent) and ground water quality 

characterization (such as defining background). If the data are used to determine whether a 

constituent is present, then the results should be handled on a case-by-case basis independent of 

the process outlined in Figure 3. If the censored data will be used to estimate summary statistics, 

then the procedure outlined in Figure 3 is applicable. 

A number of considerations, including sample size, percentage of censored data and the form of 

the data distribution determine the preferred method for handling censored data (EPA 2009). The 

use of substitutional methods (e.g., substituting half the method detection level for censored 
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values) is fraught with theoretical considerations and is to be avoided; in situations not covered 

in Figure 3, DEQ recommends following the recommendations of the Unified Guidance in this 

regard (EPA 2009, chapters 10 and 15) as well as those of Helsel (2005) and consulting with 

DEQ on a case-by-case basis. 

In general, imputation of censored values should be avoided in small (<15–20) data sets and is 

unnecessary in very large data sets (>500). If censored measurements comprise less than 50% of 

the measurements of an analyte and the data set appears to be parametrically distributed (either 

normal, lognormal, or gamma), then the statistical parameters of the distribution are best inferred 

using distributional methods such as the maximum likelihood estimator (e.g., Helsel 1990; 2005; 

the utilities available in ProUCL 5.0 [EPA 2013a]) are recommended for such situations. If 

censored measurements comprise more than 50% of the data set, nonparametric analysis is 

generally preferred unless special circumstances apply (EPA 2009); in that case multiple 

methods for estimating the distribution’s parameters should be evaluated, including a sensitivity 

analysis of the results, before deciding on the best outcome. In special cases, such as where the 

nondetect percentage is very high, DEQ may approve alternative methods for handling censored 

data on a case-by-case basis. 

 
Figure 3. Recommended process for handling censored data. 

3.6 Evaluation of Background Ground Water Quality Data 

The procedure for evaluating data to determine its suitability for statistical analysis, along with 

the information and analysis required to substantiate a statistical characterization of background 

ground water quality, are outlined in Figure 4. The steps include data compilation; exploratory 
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analysis and descriptive statistics; evaluation of data independence; analysis of frequency 

distribution and parametric behavior; seasonal and secular trend analysis; justification for data 

pooling if used; and an assessment of the adequacy of the sample size of the available data to 

support a statistical characterization of background ground water quality (section 5 provides 

more details on these terms). It is necessary to accurately characterize background ground water 

quality based on a sufficient number of samples to determine average concentrations and 

variability at the site. Most importantly, the correct form of the population distribution must be 

determined so that subsequent hypothesis tests on the data will be as accurate and statistically 

powerful as possible. This is because all statistical testing assumes that the sample data are 

representative of a mostly unobservable population of the entire range of aquifer water quality. 

In practice, the most commonly inferred population distributions are the normal, lognormal, and 

gamma. If the sample data do not conform to one of these parametric distributions, then the 

underlying population distribution is assumed to be nonparametric. 

Background ground water quality should be analyzed using the most current data available and, 

if the available data are deemed adequate to justify such an analysis, then the results of the 

statistical characterization should be summarized as part of the documentation submitted to DEQ 

for technical review.  

Appendices A through G provide suggested methods for the analyses indicated in Figure 4.  

 
Figure 4. Process for evaluating background ground water quality and data adequacy.  
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4 Statistical Determination of Water Quality Degradation 

The term degradation is defined by IDAPA 58.01.11 as “the lowering of ground water quality as 

measured in a statistically significant and reproducible manner.” To be statistically significant 

and reproducible suggests that multiple measurements over time are required to determine 

whether degradation has occurred. The number of measurements and the length of time will 

likely be site-specific and dependent on the complexity of the situation. 

Once background ground water quality is established, the next step is to determine the 

concentration at which a change in ground water quality would be statistically significant and 

constitute degradation. Whatever statistical method is used, a statistical decision threshold and a 

confidence level are necessary. Future downgradient measurements will be compared to this 

threshold to determine if degradation has occurred. The process for determining degradation is 

outlined below in Figure 5. 

 
Figure 5. Process for determining degradation limits. 

Issues to address when selecting an appropriate statistical decision threshold include the 

following: 

 Are the data adequate to justify a statistically-based decision threshold (or would an ACL 

be more appropriate [Appendix A]) 
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 Is the activity being evaluated new to the site? (This determines how future downgradient 

water quality will be evaluated to identify site impacts.) 

 Should interwell or intrawell comparison methods be used? (This depends on whether 

upgradient and downgradient comparisons of wells are possible and defensible.) 

 Is a tolerance interval or a prediction interval appropriate and justified for the problem at 

hand? 

4.1 Alternative Concentration Limit 

ACLs for COCs are to be estimated when data are insufficient to meet the statistical assumptions 

for a more detailed statistical analysis. An ACL is to be used as an interim upper limit of 

background ground water quality. The ACL is anticipated to be used primarily in situations 

where sufficient data are lacking to adequately define background ground water quality and/or an 

appropriate statistically defensible upper threshold based on background is not available. 

However, an ACL also may be selected even when appropriate data are available for valid 

statistical analyses if the interested party does not want to conduct statistical analyses and DEQ 

concurs with the decision or when a rigorous statistical evaluation is not desired, practical, or 

necessary. ACLs are to be established on a case-by-case basis in consultation with DEQ. The 

ACL estimation process is described in Appendix A. 

4.2 New Versus Existing Activity 

An appropriate statistical decision threshold should be chosen in consideration of whether an 

activity is new or existing. For example, the considerations recommended for wastewater land 

application sites are shown in Table 1. 

Table 1. Considerations for wastewater reuse sites. 

Facility with No Previous Site Impact (new or 
existing) 

Facility with Existing Site Impacts 

Downgradient wells can also be used to define 
background ground water quality 

Only wells unaffected by the facility’s 
operation can be used to define the 
background ground water quality 

Decisions are made via intrawell comparison Decisions are made via interwell comparison 
(or intrawell, if warranted) 

Upper tolerance limit (UTL) or Shewhart-CUSUM 
control chart limits are used set decision threshold 

Upper prediction limit (UPL) is used as a 
decision threshold 

Multiple downgradient wells compared to background 
UTL or individual well compared to its control chart 
limits 

Multiple downgradient wells compared to 
upgradient UPL; verify exceedance with two 
independent verification samples. 

4.3 Interwell Versus Intrawell Analysis 

The objective of degradation analysis is to identify an appropriate background data set against 

which concentrations in wells potentially affected by a facility can be compared, so as to monitor 

the facility’s impact on local water quality. Generally, interwell comparisons are appropriate 
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where water quality is spatially homogeneous, sample locations provide statistically independent 

data, and appropriate upgradient-downgradient comparisons can be identified and defended in 

the context of the hydrogeologic site conceptual model. Intrawell comparisons can be applied in 

wells where water quality has not been impacted by site activities and therefore represents 

background ground water quality at that location. Intrawell comparisons may be preferable in 

situations where strong spatial variability exists or where a single upgradient well makes it 

impossible to assess site variability (Appendix N).  

4.4 Decision Thresholds and Confidence Levels  

Decision thresholds that are commonly used in ground water monitoring are the prediction limit, 

tolerance limit, simultaneous limit, and confidence limit. An upper prediction limit (UPL) 

specifies the maximum allowed concentration that 100% of k future measurements must fall 

below in order to remain in compliance at a designated level of confidence (e.g., 95%); an upper 

tolerance limit (UTL) specifies the upper limit that a designated percentage (e.g., 95%) of all 

future measurements at a designated level of confidence (e.g. 95%) must fall below; an upper 

simultaneous limit (USL) represents the maximum concentration below which 100% of all future 

comparisons at a designated confidence level (e.g., 95%) must fall; and a confidence interval 

brackets the range of a specified population parameter (e.g., the mean) at a designated level of 

confidence (e.g., 95%) (EPA 2009). A discussion of simultaneous intervals involving multiple 

COCs is beyond the scope of this guidance; DEQ recommends that users consult the Unified 

Guidance (EPA 2009) for more on USLs. This guidance document assumes that future 

measurements will be compared to background data on a constituent-by-constituent basis, 

regardless of the decision threshold.  

Prediction and tolerance limits may be applied for compliance sampling in detection, assessment, 

and monitoring programs since only one initial sample per well is required during the 

compliance period. These limits also may be used for establishing background-based ground 

water concentrations. Confidence intervals are most often used when comparing water quality 

measurements to a ground water standard that is based on a mean or median value (Virginia 

DEQ 2003). Before calculating these limits, it should be confirmed that the background data are 

statistically stationary, independent, and parametrically distributed (Appendix O provides more 

details on these terms). 

Concepts to keep in mind when considering confidence intervals are as follows:  

 Wider statistical intervals are associated with higher confidence levels (1-)/lower 

significance levels (). However, too high a confidence level decreases the power of the 

test (the probability of detecting an exceedance) so the confidence level should not be set 

higher than necessary. Conversely, too low of a confidence level may result in an 

excessive number of exceedances.  

 The conservative choice when testing for a trend or a difference is to use a narrower 

interval or a lower confidence level (90% or 85%). This lower confidence level would 

reduce the probability that a difference or exceedance may be missed. In most cases, a 

95% confidence level ( = 0.05) provides the best compromise between power and 

confidence. 
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 For nonparametric methods in which the confidence level depends on sample size, select 

the highest confidence level dictated by the available sample size. Larger sample size 

may be needed to achieve a desired confidence level. 

4.4.1 Interwell and Intrawell Tolerance Limits 

At sites where ground water has not been previously affected by site activities, future water 

quality measurements can be compared to background ground water quality via an intrawell 

UTL or an interwell UTL. An intrawell UTL sets the background water quality for each COC in 

a given monitoring well, and compliance decisions are based on future samples from the same 

well; it is described in more detail in Appendix H. An interwell UTL is based on background 

water quality for each COC in one or more upgradient wells, and compliance decisions compare 

future samples from downgradient wells with the UTL. Application of either method requires 

that the data have been corrected for seasonal effects and do not display secular trends. For data 

that meet the above requirements but are not parametrically distributed, a nonparametric UTL 

can be calculated. Appendix I contains information on the sample sizes needed for nonparametric 

UTLs. DEQ may accept other decision thresholds for intrawell determination of degradation. 

4.4.2 Interwell Prediction Limits 

In cases where site conditions indicate that the ground water quality in downgradient wells 

differs from background conditions (because of existing site practices), data from up to six
†
 

downgradient wells can be compared to upgradient wells (an interwell analysis) via a parametric 

or nonparametric UPL calculated from upgradient background data. 

Application of the method requires that the data are parametrically distributed, deseasonalized, 

and that at least eight background measurements are available (EPA 2009). The use of fewer 

background samples can result in an unacceptably large decision threshold and limited ability to 

detect exceedances. For data that meet the above requirements but are not parametrically 

distributed or that have a large proportion of nondetects, a nonparametric UPL can be calculated. 

However, larger background sample sizes are generally required (Appendix K). DEQ may accept 

other decision thresholds for interwell comparisons to determine degradation. 

4.4.3 Interwell Simultaneous Limits 

Typically, when only a small number (n < 6; EPA 2013b) of downgradient values are compared 

with background, an UPL is a suitable decision threshold. When many downgradient 

measurements need to be compared, an interwell UTL or USL should be used. A USL is similar 

to an interwell UTL in that it is an upper interval estimate below which the majority of future 

measurements are expected to fall, and both account for the expectation that multiple 

comparisons against a decision threshold increase the probability that at least one will exceed the 

threshold as the number of comparisons increases. The USL overcomes this limitation by 

appropriately raising the decision threshold to control the false positive rate while maintaining 

the statistical power of the test to detect an actual exceedance. A USL requires that all 

                                                 

†
 Comparison of more downgradient wells leads to questions of hydrogeologic homogeneity and interwell 

comparability (EPA 2009) 



Statistical Guidance for Determining Background Ground Water Quality and Degradation 

16 

measurements in the background data set are below that value; if a downgradient value exceeds 

this threshold, it is by definition not part of the background population and signifies the presence 

of contamination. Typically, a USL results in fewer false positives than a UTL, especially for 

larger background sample sizes (n > 15; EPA 2013b).  

EPA strongly recommends that a USL only be used for downgradient data sets of moderate size 

(<30 wells) and when the background data set represents a single, well-defined statistical 

population without outliers (anomalous observations, unrepresentative of background; EPA 

2013b). 

4.5 Verification Resampling 

Resampling is not performed when a UTL is used as the decision threshold. However, when 

parametric or nonparametric UPLs (Appendices J and K) are used to detect degradation, EPA’s 

Unified Guidance recommends that a verification resampling strategy be used to minimize false 

positives and maximize the statistical power of the decision threshold. For each compliance well 

where a prediction limit is exceeded, DEQ recommends collecting up to two additional samples 

(allowing sufficient time between resampling to ensure statistical independence). This protocol 

conforms to EPA’s 1-of-3 retesting option: only if the first resample is in compliance is a second 

resample necessary; otherwise the first resample, by also being out-of-bounds, confirms the 

initial exceedance (EPA 2009, section 19.1). 

4.6 Trending Data 

In cases where background water quality data describe a trend, the trend must be evaluated to 

determine its cause. Water quality may show a trend in response to (1) natural circumstances or 

(2) anthropogenic activities such as land use changes. A trend can be seasonal, monotonically 

positive or negative and can disappear or grow over time. If monotonic, particular care should be 

exercised that a future change in trend can be detected (Appendix L provides an example). Only 

if trend removal can be rigorously justified both statistically and hydrogeologically—and 

quantified (e.g., via deseasonalization or ordinary least squares)—can the trend be removed from 

a data set prior to background analysis. In that case, the trend is also removed from all future 

samples and verification resamples prior to compliance testing with a UTL, UPL, or other 

exceedance-detection threshold. An example is provided in Appendix F, and Appendix L 

describes methods for establishing interim decision thresholds when a monotonic trend may be 

approaching a new stationary background level, either because of natural flow system change or 

modified site or land use practices.  

Appendix M and Appendix N provide examples of how the guidance may be applied to new and 

existing wastewater reuse sites.  
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5 Summary of Process 

5.1 Determination of Background Ground Water Quality 

New sites have the advantage that all monitoring wells, regardless of whether they are upgradient 

or downgradient, can be used as background monitoring wells. For example, at wastewater reuse 

facilities where land is being converted from another land use (such as irrigated agriculture) to 

treated wastewater application, it is possible that some or all wells will not have attained a steady 

state condition or that downgradient wells will have reached a different steady state condition 

than upgradient wells. 

For a new site or new unused acreage at an existing site, such as a wastewater reuse permit 

facility that has yet to have any treated wastewater applied, the first step is to conduct descriptive 

statistics on the COCs in all wells (Appendix B). Following the initial descriptive statistical tests, 

each of the monitoring wells should be evaluated for data independence (Appendix C). The form 

of the data distribution (parametric or nonparametric) should be determined next (Appendix D).  

Statistically significant seasonal trends for each of the COCs (Appendix E) are then evaluated 

and such trends removed to produce a seasonally stationary data set. As the regulated entity is 

required to evaluate at least 3 years of quarterly data (where each quarter’s data represents the 

same month from year to year), some of the background ground water quality variation may be 

due to changing land use practices (e.g., nearby agricultural activities and river and canal flows) 

or climatic changes (e.g., precipitation patterns, and evapotranspiration). The preferred method 

for determining seasonal stationarity is the nonparametric Kruskal-Wallis test (Appendix E). 

The resulting data set should then be checked for the presence of secular (long-term) temporal 

trends (Appendix F). If a trend exists, then setting degradation thresholds may not be statistically 

valid and can lead to erroneous conclusions. The recommended method for testing for temporal 

stationarity is the nonparametric Mann-Kendall test for trend. 

If the Mann-Kendall test shows that there is a statistically significant secular trend (either 

positive or negative), then an alternative method needs to be followed to set the standard(s) that 

the regulated entity will need to follow (section 5.2.1). If the Mann-Kendall test reveals no 

secular trends, the regulated entity can proceed to determine whether the data from multiple 

background wells can be pooled (Appendix G).  

5.2 Determination of Degradation  

At this point, background ground water quality has been rigorously evaluated and its statistical 

characteristics identified. The next step is to define appropriate thresholds against which future 

measurements can be compared to identify potential water quality degradation. 

5.2.1 Intrawell Comparisons 

Parametric tolerance levels for intrawell comparisons can be set using the methodology provided 

in Appendix H. An intrawell analysis allows future constituent levels in a well to be compared to 

the limit established by that well’s own background ground water quality. To use this method, 
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one must have a data set that (1) is stationary (free of secular trends and has no statistically 

significant seasonal effects or has been corrected for seasonality), (2) is parametrically 

distributed, and (3) represents a site where the ground water has not been impacted by previous 

site activities. Appendix I provides a methodology for determining nonparametric tolerance 

limits (where the same assumptions apply). Future water quality for each COC in each well is to 

be compared to the UTL in each well. If the rate of exceedances observed in future sampling is 

greater than that used to establish the tolerance limit (e.g., 5% of all future measurements), then 

the ground water is deemed to be degraded. As an alternative to the use of tolerance limits, 

Appendix N describes the Shewhart-CUSUM control chart method, which monitors gradual and 

rapid contaminant impacts within a well in a time-series context. 

5.2.2 Interwell Comparisons 

The methodology for setting parametric prediction levels for interwell analyses is provided in 

Appendix J. In this case, an UPL is defined on the basis of upgradient water quality data. To use 

this method, one must have a data set that (1) is stationary (free of secular temporal trends and 

has no statistically significant seasonal effects or has been corrected for seasonality), and (2) 

meets the parametric distribution assumptions. Site conditions must be such that the 

downgradient well water quality can be compared to upgradient water quality (an interwell 

analysis). Appendix K assumes the same conditions as Appendix J except the distribution is 

nonparametric. A specified number of future water quality measurements in downgradient wells 

are compared to the UPL established in upgradient wells; any exceedance should be verified by 

the resampling procedure discussed in Appendix J.  

Within the context of this guidance, a verification sample is a sample that exhibits data 

independence from the result it is attempting to verify. It is distinct from a measurement 

confirmation sample, which is a sampling event used to confirm the initial result. 

5.2.3 Treatment of Verification Versus Confirmation Resampling Data 

Verification resampling measurements collected in response to a potential exceedance can be 

retained and treated as part of the overall background data set if (1) the samples were collected 

so as to be temporally independent (section 4.5 and Appendix J, section J.1), and (2) an 

exceedance was not confirmed. In contrast, confirmation (i.e., duplicate) sampling results should 

be averaged to provide a single measurement value for use in subsequent statistical analyses. 

5.2.4 Interim Methodology for Trending Data 

Appendix L outlines a suggested procedure for setting an interim UPL for situations that violate 

the stationarity assumption (i.e., where the data show a secular trend). 
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Appendix A. Alternative Concentration Limits 

Alternative concentration limits (ACLs) for constituent(s) of concern are estimated when there 

are insufficient data to meet the statistical assumptions for a more detailed statistical analysis. 

The following three measures of upper concentration limits are calculated from available data.  

1. 1ACL  the largest of the 12 most recent data values collected 

2. s65.1ACL2  mean   

3. IQR*65.1medianACL3   (where IQR = the interquartile range) 

The Idaho Department of Environmental Quality (DEQ) specifies that the lowest of these limits 

is then to be used as an interim upper limit of background ground water quality in order to be 

fully protective of human health and the environment in situations where sufficient data are 

lacking to adequately define background ground water quality and/or an appropriate statistically 

defensible upper threshold based on background is not available. 

ACLs are to be established on a case-by-case basis in consultation with DEQ.  
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Appendix B. Exploratory Data Analysis/Descriptive Statistics 

B.1. Descriptive Statistics  

Once adequate data have been collected, the data are analyzed using descriptive statistics to 

characterize the overall population. For each constituent, at a minimum, the user should calculate 

the mean, standard deviation, skewness, median, minimum, and maximum for each constituent at 

each monitoring well, as well as summarize the sample size, proportion of censored data, and 

potential outliers and how they are treated in the subsequent analysis. In addition, visual 

representations of the distribution of each constituent should be provided in the form of box 

plots, histograms, and concentration-time plots for each constituent in each well.  

As has been previously stated, the reason for collecting sample data is to understand the 

underlying statistical distribution of the ground water source from which the samples were 

drawn. The sample mean provides a measure of the central tendency of the population, whereas 

the sample standard deviation provides a measure of its spread, or dispersion. The measurements 

represent just one of many possible subsets of data that could have been collected from the entire 

population. Different samples will obviously lead to different values of the sample mean and 

sample standard deviation. These differences are the reason why statistical intervals are used to 

infer population parameters and set decision thresholds. 

In any set of data, it is possible that there will be outliers (anomalous results). Outliers can have 

one of three causes: (1) a measurement or recording error, (2) an observation from a different 

population, or (3) a rare event from the tail of the population of interest. Outliers can be 

discarded from the data set with adequate justification. For example, a valid justification for 

removing an outlier would be the simultaneous occurrence of extreme values in four independent 

data sets on the same day. This type of event would strongly suggest either a field contamination 

issue or a lab error. The United States Environmental Protection Agency’s (EPA’s) Unified 

Guidance (EPA 2009) and ProUCL User’s Guide (EPA 2013) provide additional guidance on 

how outliers should be handled.  

Table B1 provides a simple example of calculating summary statistics manually. ProUCL v.5.0 

also has useful tools for calculating summary statistics, with or without nondetect values, 

although the inclusion or exclusion of outliers is a decision that must be justified by the user.  

Other descriptive statistics include the median, minimum, maximum, and quartiles. The median 

and quartiles are not affected by outliers unlike the sample mean, standard deviation, and 

skewness.  

A graphical summary of the data, including the relevant constituents of concern (COCs), should 

provide box plots, showing at least the median, minimum, maximum, and quartiles for each COC 

and time-series plots. The latter provide a visual indication of whether there is a seasonal 

component to the data, whether there is a secular (long-term) trend, and/or whether the trend has 

changed or may be changing (approaching a new steady-state condition). An example of a box 

plot is provided in Figure B1. 
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Figure B1. Box plots created by ProUCL 5.0 illustrating the centermost half of the data (the 
hourglass polygon) that straddles the median (the polygon’s waist), the interquartile range (upper 
and lower limits of the polygon); the upper and lower adjunct limits (horizontal lines; Appendix O, 
section O.3); and extreme values (dots) that lie beyond the adjunct limits.  

B.2. Example  

Where appropriate, data from the following scenario will be used to illustrate selected 

applications in the various appendices of this guidance document. A wastewater reuse facility 

wants to determine a background ground level for total dissolved solids (TDS), above which 

there is a certain degree of statistical confidence that elevated values would indicate degradation 

of ground water quality. The facility has two background wells (B1 and B2). Well B1 is located 

near an irrigation canal and the canal may seasonally influence the water quality. Well B2 is 

located away from the irrigation canal. Three years of quarterly data have been collected at each 

monitoring well. Table B1 lists the TDS data in parts per million (ppm) and also provides 

summary statistics for the TDS data. Figure B2 summarizes these data graphically in the form of 

a time-series plot. 
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Table B1. Data and resulting descriptive statistics for example scenario. 

Time Index 
TDS 

Well B1 (ppm) 
TDS 

Well B2 (ppm) 

Year 1—1
st
 quarter 305 252 

Year 1—2
nd 

quarter 228 251 

Year 1—3
rd 

quarter 258 245 

Year 1—4
th
 quarter 259 252 

Year 2—1
st
 quarter 285 260 

Year 2—2
nd

 quarter 210 248 

Year 2—3
rd

 quarter 274 275 

Year 2—4
th
 quarter 240 272 

Year 3—1
st
 quarter 290 256 

Year 3—2
nd

 quarter 216 246 

Year 3—3
rd

 quarter 248 218 

Year 3—4
th
 quarter 235 225 

Descriptive statistics
a
 

Mean 254 250 

Variance 904 268 

Standard deviation 30.0 16.4 

Skewness 0.20 -0.52 

Minimum 210 218 

Maximum 305 275 

Median 253 252 

1
st
 quartile 231 246 

3
rd

 quartile 280 258 

a. Excel software used for calculations. 
Note: total dissolved solids (TDS); parts per million (ppm) 

 
Figure B2. Time-series graphs of concentration data in Table B1 created with ProUCL. 
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Appendix C. Data Independence 

C.1. Introduction and Background 

All of statistical theory and practice is based on three fundamental premises. First, a collection of 

measurements represents a random sample of the underlying population that is free of any bias 

imposed by the measurement process (e.g., the individual who conducted the sampling or the 

analytical method used to make the measurements).  

Second, the statistics estimated for a population depend on the measurements used to make the 

estimate but bracket the true population statistics (i.e., the sample is representative), allowing us 

to infer the population statistics from any sample.  

Third and perhaps most important from a practical standpoint, the data are assumed to be 

independent: that is, each measurement is randomly representative of the target population and 

its value is not influenced by any other measurement (i.e., each measurement is independent of 

every other). Dependent measurements exhibit less variability; for example, multiple 

measurements of dissolved nitrate collected from a well at 5-minute intervals are all very similar, 

which leads to an underestimation of the population variance that in turn affects the prediction 

limit and tolerance limit. In reality, every measurement of the physical world is to some degree 

dependent on (similar to, correlated with) previous or nearby measurements; such dependence is 

known as autocorrelation. For example, replicate measurements of stream chemistry are much 

more similar to each other than measurements collected a year apart. In another example, 

consider the analysis of dissolved nitrate in water from five wells (N = 5) where, for quality 

control, four aliquots of water are collected and analyzed from well 5. When calculating the 

average nitrate concentration in the five wells, the replicates cannot be treated as separate, 

random outcomes in a sample of N = 9 measurements because they constitute redundant 

information about the population. If nitrate in well 5 happens to be twice the average 

concentration of the other four wells and all nine measurements are averaged, then the apparent 

mean would be biased high by 50% and the apparent variance would be far lower than the actual 

population variance.  

Every statistical procedure in this document assumes that the data being analyzed are 

independent. If the data are not independent, the effect is generally to decrease the power of 

hypothesis tests (e.g., reducing the ability to detect an exceedance), particularly tests that rely on 

an unbiased estimate of the variance.  

Unfortunately, there is no general method for testing for data independence and little practical 

guidance is available in the literature. The onus is on the statistical analyst to evaluate the data on 

a case-by-case basis. The purpose of this appendix is to suggest possible approaches that can be 

used to evaluate data independence; where that is not possible, to provide some general 

guidelines to evaluating site-specific sampling conditions to minimize the risk of bias due to lack 

of data independence. 

C.2. Example: Evaluating Data for Temporal Independence 

Significantly more attention has been given to the issue of temporal autocorrelation than to 

spatial autocorrelation. For serial data (i.e., time-series, temporally sequenced, time-variable 
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data), two different approaches have been taken: (1) demonstrating physical independence 

between successive samples based on the minimum time required for ground water to move past 

the sampling point (EPA 2009), and (2) evaluating time-series data to characterize the time scale 

associated with statistical independence (Barcelona et al. 1989; Oswina et al. 1992; 

Johnson et al. 1996; Ridley and MacQueen 2005; EPA 2009).  

The basic requirement is that sufficient time must elapse between sampling events to ensure 

independence. A commonly applied rule of thumb is that data to be used for statistical analysis 

and hypothesis testing should be collected no more frequently than quarterly (Gibbons 1994), but 

this guideline may not apply in aquifers with very slow ground water flow rates. The Idaho 

Department of Environmental Quality (DEQ) recommends that estimates of ground water flow 

velocity and travel times be used to confirm the validity of the quarterly rule of thumb using the 

procedure based on Darcy flow velocity outlined in the Unified Guidance (EPA 2009, section 

14.3.2); For very small sample sizes (N < 12), a method proposed by Ridley and MacQueen 

(2005), based on decision-tree logic, could be adopted until sufficient historical data are 

available, but the method is cumbersome. Where sufficient data are available (N > 20–30), 

standard time-series analysis methods can be applied (Salas 1993). For example, a basic 

autoregression analysis (e.g., a Box-Jenkins autocorrelation plot available in statistical software 

packages such as R and MATLAB), can be applied. Prior to analysis, the data should be 

detrended but not deseasonalized. Alternatively, a one-dimensional semivariogram (Oswina et al. 

1992) can be computed using standard geostatistical software (Deutsh and Journel 1998). 

However, there is little benefit to be gained from such an exercise if data have been collected no 

more frequently than quarterly (in which case, the quarterly rule of thumb can be applied).  

As an example, the total dissolved solids (TDS) data in Figure C1 represent varying sampling 

intervals over a 3-year period, with an indication that monthly measurements tend to be more 

similar than quarterly measurements (i.e., autocorrelated). The raw (non-deseasonalized) data of 

Figure C1 were first reduced by calculating the quarterly averages of multiple measurements 

within each quarterly span (Washington State 2005). A plot of lag-dependent autocovariance 

(Box-Jenkins autocorrelation plot of Figure C2) or first-order autocorrelation coefficients ( EPA 

2009, section 14.2.3) can be created in a simple spreadsheet or in a statistical package like R or 

MATLAB. The autocovariance and autocorrelation coefficient are a function of lag (separation 

in time) and both decay from a value equivalent to the sample variance at zero lag to near zero at 

a lag of 180 days. Therefore, the TDS data used to create Figure C1 demonstrate that future 

samples will be statistically independent if collected at a frequency no greater than once every 

180 days. However, this sampling interval may be longer than necessary because quarterly 

averages of the data were used in calculating the autocorrelation statistic rather than monthly 

data.  

An alternative approach to using a time-series statistical package is to calculate a one-

dimensional semivariogram of the detrended data using a geostatistical software package 

(Oswina et al. 1992; Johnson et al. 1996), where the spatial x,y coordinates are replaced by a 

time coordinate. Such a plot, using the monthly data in Figure C1, is shown in Figure C3. Unlike 

the autocorrelation statistics, the value of the semivariogram statistic in this plot rises rapidly to a 

sill value that is at or near the sample variance.  
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Figure C1. Example ground water TDS measurements used for evaluating the statistical 
independence of a time-series data set. 

 
Figure C2. Box-Jenkins autocovariance plot created using the quarterly-averaged data in Figure 
C1. The value of the autocovariance statistic decays to zero at a lag of about 180 days, suggesting 
that measurements spaced at least semiannually are statistically independent. 

 
Figure C3. An example of a semivariogram (Isaaks and Srivastava 1989) computed for all of the 
TDS data in Figure C1, showing that time-series measurements at this location are statistically 
independent if made at least 90 to 100 days apart (i.e., about quarterly). 

The lag at which the sill is achieved (approximately 90 to 100 days in this example) represents 

the minimum time interval over which measurements can be considered to be statistically 

independent. In this case, the minimum time interval proves to be shorter than that of Figure C2 

because the monthly data were analyzed rather than the quarterly. 
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C.3. Evaluating Data for Spatial Independence 

Guidance for evaluating spatial data independence is almost completely absent in the literature. 

Ideally, a geostatistical analysis could be conducted on spatial data in the same way that the one-

dimensional semivariogram of Figure C3 was calculated for temporal data, the difference being 

that lags are defined in a two-dimensional spatial sense rather than a temporal sense (Isaaks and 

Srivastava 1989; Bertolino et al. 1983; Cameron and Hunter 2002). Because the number and 

spacing of monitoring locations (as well as the availability of data at each well) determine how 

useful such an analysis will be, the approach is rarely fruitful in small monitoring networks (<5 

to 10 wells). Small monitoring networks typically have insufficient wells with which to calculate 

reliable semivariogram statistics, so that minimum interwell spacing to ensure data independence 

cannot be determined. Figures C4 and C5 illustrate the problem conceptually.  

 
Figure C4. A hypothetical example of a semivariogram based on a sufficient number of monitoring 
points to construct a well-defined semivariogram and identify the minimum interwell spacing 
necessary to maintain spatial data independence. In this example, wells that are at least one-half L 
apart provide statistically independent information. 

 
Figure C5. Semivariogram based on insufficient data to define spatial independence. 

As Gibbons (1994) and others have pointed out, the spatial variability of water quality across a 

monitoring site is as important as interwell spacing considerations. If the aquifer is highly 

heterogeneous, then the assumption of spatial data independence may be violated for reasons 

other than well spacing: that is, contaminant concentrations in an active flow zone are biased 

high relative to concentrations in slow or inactive flow zones. Wells completed in hydraulically 

tight units will tend to reflect lower values of contaminant concentration than wells in more 

permeable zones, even if they are hydraulically downgradient of the contaminant source. It is for 
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such reasons that intrawell evaluation methods may be the only rational alternative when 

evaluating monitoring data from highly heterogeneous aquifers (Gibbons 1994). 

Because of the above concerns, DEQ suggests that a qualitative assessment of spatial data 

independence should be performed, including but not limited to the following: 

1.  Estimates of ground water flow velocity and interwell travel times (EPA 2009); 

minimum well spacings in high flow-velocity zones will be greater than in low 

velocity zones. 

2. The existence of a spatial trend in concentration across the facility tends to strengthen 

autocorrelation in that direction, so that minimum well spacing to ensure data 

independence in the direction of the trend will be less than across it. 

3. If data from multiple upgradient wells cannot be pooled (Appendix G) because of 

hydrochemical variability across the site or if considerable hydraulic heterogeneity 

exists, then intrawell methods (Appendices H, I, N) should be adopted if at all 

possible. 

In general, intrawell analysis methods should be explored wherever aquifer heterogeneity is 

significant and/or water quality is highly variable across a site. In such situations, DEQ may 

grant site-specific variances based on modifications of the methods contained in this document 

or other methods. 
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Appendix D. Determination of Normality and Choice of 
Distribution 

D.1. Testing for Normality Using the Shapiro-Wilk Test 

The importance of correctly determining the nature of the underlying population from which 

samples are drawn cannot be overemphasized. The primary reason to test whether data follow a 

normal or other theoretical (parametric) distribution is to determine whether or not parametric 

test procedures can be employed in subsequent statistical analysis. The ability to apply 

parametric statistical tests conveys higher statistical power, a lower false-positive error rate, and 

more confident conclusions overall.  

Statistical hypothesis tests of a sample distribution are based on a null hypothesis, H0, which 

states that the data set represents a specific type of parametric population (e.g., normal, 

lognormal, and gamma). An appropriate test statistic is calculated from the sample data (section 

D.2) and compared against a tabulated statistic to determine whether H0 can be accepted or 

rejected. Failure to reject H0 does not prove the data were drawn from a normal population 

(especially when the sample size is small), only that the hypothesis of normality cannot be 

rejected with the available evidence and at the stated level of significance (usually 0.05 or 5%). 

A significance level greater than 0.05 increases the power of the test (its ability to reject H0) but 

at the expense of falsely detecting non-normality (a false positive result). The use of higher 

significance levels (e.g., 0.1 or 0.15) is particularly useful when testing very small sample sizes 

(Helsel and Hirsch 1995). 

A critical aspect of the testing procedure concerns right-skewed data sets that contain a few high 

values. This is especially true when the sample size is small (N < 20–30). It has been a long-

standing practice to logarithmically transform such data sets, test the log-transformed values for 

normality, and conclude that the distribution is lognormal. With growing awareness of the 

advantages and power of the gamma distribution (Appendix O) and of software to perform the 

statistical calculations, The United States Environmental Protection Agency’s (EPA’s) Unified 

Guidance now strongly recommends that skewed sample data sets should not be modeled as 

lognormal distributions but as gamma-distributed populations (EPA 2009, 2013a, 2013b). The 

principal reason is that a lognormal transformation disguises the effect of high values that may 

not represent background and exaggerates the apparent standard deviation of the modeled 

lognormal distribution. This, in turn, inflates decision thresholds that are based on the lognormal 

statistics, leading to incorrect and unrealistically high UPLs and UTLs that will be used to 

determine future compliance. 

Therefore, the Idaho Department of Environmental Quality (DEQ) recommends that skewed 

sample data be modeled either as gamma-distributed or as nonparametric, particularly if the 

sample size is less than 20 and/or contains outliers. Because of the gamma function’s flexibility 

in accommodating a wide range of symmetric and asymmetric (skewed) distributions, it is 

capable of representing a lognormally distributed data set without the risk of masking the effects 

of outliers.  

Figure D1 illustrates the general approach to hypothesis testing and determining an appropriate 

population distribution model. The flow chart represents decisions that would be made when 
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manually calculating test statistics for various hypothesis tests. Many types of statistical software 

(e.g., ProUCL, Minitab, and S-plus) allow alternative hypothesis tests to be executed 

simultaneously, in which case Figure D1’s logic applies to the decision process to be used in 

assessing the output of the software’s hypothesis test results.  

A Shapiro-Wilk test for normality is a widely used hypothesis test that would be applied in a 

series of tests like those outlined in Figure D1. This test is superior to the chi-square test (EPA 

1988; EPA 2009; Fisher and Potter 1989) and is recommended because it is based on the normal 

probability plot (Helsel and Hirsch 1995). The Shapiro-Wilk test is designed for data with less 

than 10%–20% censoring, wherein all censored measurements up to this limit are withheld from 

the calculation. If censoring is greater than 20%, then either Royston's method (Royston 1993) or 

an appropriate adjustment to the sample standard deviation (Cohen 1991; Aitchison 1955) must 

be applied when using this test statistic. The test is based on the premise that the ranked sample 

values should be highly correlated with the corresponding quantiles taken from a normal 

distribution if the data set is normally distributed (Shapiro and Wilk 1965). An example of its 

application is given in section D.2. 

 
Figure D1. Decision tree for determining a population distribution. 

D.2. Calculation Procedure 

The Shapiro-Wilk statistic “W” is proportional to the ratio of the squared slope of the normal 

probability plot to the mean square estimate (Gibbons 1994): 
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Consider the total dissolved solids (TDS) data for well B1 (Appendix B and Table D1). The null 

hypothesis, H0, is that the sample data are normally distributed. The coefficients ai,n for the W 

statistic are given in Table D2 (Gibbons 1994 provides  a more complete table). Recalling that s 

is the standard deviation, W can be re-expressed as 
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The calculation procedure is as follows: 

Step 1: Order the data from smallest to largest and list, as in Table D1. Also list the data in 

reverse order alongside the first column. 

Step 2: Compute the differences x(n-i+1)-xi in column 3 of Table D1 by subtracting column 1 from 

column 2. 

Step 3: Compute k as the greatest integer less than or equal to n/2. k = (n-1)/2 if n is odd and 

k = n/2 if n is even. Since n = 12, k = 6 in this example. 

Step 4: Look up the coefficients an-i+1 from Table D2 and list in column 4. Multiply the 

differences in column 3 by the coefficients in column 4 and add the first k products to get the 

quantity b. 

Step 5: Compute the standard deviation of the sample (9.77) and calculate W (0.861). 

Step 6: Compare the computed value of W to the 5% critical value, equivalent to an  value of 

0.05 (Table D3) for a sample size of 12 (0.859).  
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Table D1. Example of Shapiro-Wilk test for normality on TDS data from well B1. 

Ranked data 
value 

xi x(n-i+1) x(n-i+1)-xi an-i+1 bI 

1 242 268 26 0.5475 14.4175 

2 244 268 24 0.3325 7.869167 

3 246 266 20 0.2347 4.694 

4 246 264 18 0.1586 2.8548 

5 249 252 3 0.0922 0.245867 

6 251 252 1 0.0303 0.0404 

7 252 251 -1 — b=30.12 

8 252 249 -3 — — 

9 264 246 -18 Std_dev = 9.77 

10 266 246 -20 — — 

11 268 244 -24 W = 0.8612 

12 268 242 -26 — — 

The closer the value of W is to 1.0, the greater is the support for the normality assumption. The 

assumption of normality is rejected if the computed value of W is less than W’s critical value in 

Table D3. In this case, the null hypothesis is accepted because W (0.861) is greater than the 

critical value (0.859). Therefore, the data can be assumed to be normally distributed.  

The process for testing for lognormally distributed data is the same, except that the data are log-

transformed prior to performing the Shapiro-Wilk hypothesis test.  

Table D2. Partial list of coefficients ai for the Shapiro-Wilk test of normality. 

# of 
data 

8 9 10 11 12 13 14 15 16 

k          

1 0.6052 0.5888 0.5739 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 

2 0.3031 0.3244 0.3291 0.3315 0.3325 0.3325 0.3318 0.3306 0.3290 

3 0.1743 0.1976 0.2141 0.2260 0.2347 0.2412 0.2460 0.2495 0.2521 

4 0.0561 0.0947 0.1224 0.1429 0.1586 0.1707 0.1802 0.1878 0.1939 

5 — 0.0000 0.0399 0.0695 0.0922 0.1099 0.1240 0.1353 0.1447 

6 — — — 0.0000 0.0303 0.0539 0.0727 0.0880 0.1005 

7 — — — — — 0.0000 0.0240 0.0433 0.0593 

8 — — — — — — — 0.0000 0.0196 

Sources: Complete tables in Shapiro and Wilk (1965); (EPA 1992);and  Gibbons (1994). 
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Table D3. Lower 1% and 5% critical values for Shapiro-Wilk test statistic W. 

Sample Size 1% W Value 5% W Value Sample Size 1% W Value 5% W Value 

8 0.749 0.818 13 0.814 0.866 

9 0.764 0.829 14 0.825 0.874 

10 0.781 0.842 15 0.835 0.881 

11 0.792 0.850 16 0.844 0.887 

12 0.805 0.859 — — — 

Sources: Complete tables in Shapiro and Wilk (1965); EPA (1992); and Gibbons (1994). 

D.3. Calculation Example Using ProUCL 5.0: Weakly Skewed Data 

For the purposes of this example, the raw TDS data in Table B1 for well B1 and B2 were pooled 

naively, that is, without considering whether they should be (Appendix G) and without testing 

and adjusting for seasonality or trend (Appendices E and F). Figure D2 shows a histogram of the 

data values with five histogram bins. The sample data appear to be only slightly skewed 

(skewness = -0.56); there are no apparent outliers; and the data distribution is close to symmetric 

(the mean and median are almost identical). A visual assessment cannot determine whether the 

data are normally distributed or not.  

Figure D3 shows output from ProUCL’s “Goodness-of-Fit Tests” option showing Q-Q plots and 

fitting statistics when the data are compared with three types of parametric distributions (normal, 

lognormal, and gamma). Table D4 is a screen capture from ProUCL’s “G.O.F. Statistics” option 

that summarizes goodness-of-fit statistics for the three Q-Q plots. Note that the Shapiro-Wilks 

test described in section D.2 and the Lilliefors test are used to evaluate normal and lognormal 

fits, whereas two different statistical tests, the Anderson-Darling and Kolmogorov-Smirnov tests, 

are used to evaluate the fit to a gamma distribution.  

In this case, the similarity of the regression fits to the various Q-Q plots (Figure D3) and the 

goodness-of-fit results (Table D3) indicate that there is no basis for selecting a best distribution. 

Therefore, using the logic of Figure D1, the normal distribution assumption should be used in all 

subsequent analysis steps. In other situations, the flow logic of Figure D1 should be used to 

determine which distribution is appropriate (e.g., a slightly skewed data set with no outliers that 

passes the gamma and lognormal distribution tests but not the normal test should be modeled 

with the gamma distribution). When in doubt, more than one distribution option can be carried 

forward to ensure that the choice does not have a major influence on subsequent conclusions and 

that decision thresholds computed on the basis of different possible distributions do not differ 

widely. Appendix K, section K.3, provides further discussion of the dependence of decision 

thresholds on the choice of a distribution. 
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Figure D2. Histogram of pooled TDS data from Table B1, superimposed on a normal distribution 
for visual comparison purposes. The mean (black line) and median (orange line) are shown for 
reference. 

 
Figure D3. Goodness-of-fit results, in the form of Q-Q plots of the data represented in Figure D2 
relative to (A) a normal distribution, (B) a lognormal distribution, and (C) a gamma distribution.  
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Table D4. Goodness-of-fit summary statistics for the Q-Q plots in Figure D3. 

 

D.4. Calculation Example Using ProUCL 5.0: Strongly Skewed Data 

A data set from ProUCL 5.0’s library of examples
‡
 is used to illustrate Figure D1’s decision 

process with non-normal data. Figure D4 shows a histogram of the data values, indicating that 

the sample is strongly right-skewed and contains several extreme values well beyond the 

distribution’s mode.  

Figure D5 summarizes the Q-Q plots and goodness-of-fit results for three types of parametric 

distributions (normal, lognormal, and gamma) and Table D5 summarizes the goodness-of-fit 

statistics for all three parametric distribution options. As is visually apparent—and confirmed by 

hypothesis test results—these sample data cannot possibly represent a normal population at a 

confidence level of 95% (or even 90%). 

                                                 

‡
 The file “Ex-lognormal-Gamma.xlsx,” is provided in ProUCL’s installation directory under the \Data folder 
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Figure D4. Data used to illustrate the decision process in Figure D1 when the sample is highly 
right-skewed. 

Visual comparison of Figure D5(B) and D5(C) illustrates the effect that log-transformation has 

on the transformed data and the influence of extreme values. Relative to the gamma 

distribution’s quantiles, the lognormal quantiles bunch up the sample quantiles along the 

regression line. The result is to weight extreme values much more heavily in a goodness-of-fit 

assessment of the lognormal distribution. This is, in turn, a direct consequence of the masking 

effect that log-transformation has on extreme values and its tendency to inflate the larger 

standard deviation of the transformed distribution thereby masking the presence of outliers and 

extreme values. For these reasons, DEQ follows EPA’s lead in recommending that strongly 

skewed data be modeled with the gamma distribution wherever possible.  
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Figure D5. Graphical summaries of goodness-of-fit to (A) a normal distribution, (B) a lognormal 
distribution, and (C) a gamma distribution. 

Table D5. Goodness-of-fit summary statistics for the Q-Q plots shown in Figure D5. 
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Appendix E. Seasonal Trends 

E.1. Testing for Seasonality Using the Kruskal-Wallis Test 

One of the important requirements for conducting statistical tests is temporal stationarity, 

specifically; do the data exhibit seasonal variations in concentration? Note that k, the number of 

seasons, is defined to be appropriate for the data being analyzed; for example, hourly stream 

temperature measurements might be grouped into two 12-hour seasons per day whereas monthly 

ground water measurements are usually grouped into four 3-month seasons For measurements 

collected quarterly over a multiyear period (each quarter tested in the same month), some of the 

variation in background ground water quality may be due to changing land uses (e.g., nearby 

agricultural activities and river and canal flows), which can obscure seasonal variations in water 

quality due to precipitation and evapotranspiration.  

The Kruskal-Wallis test for seasonality is described below (Gilbert 1987; Helsel and Hirsch 

1995). This test is considered a nonparametric test, which means that the underlying population 

distribution is not assumed. The Kruskal-Wallis test may be computed by an exact method used 

for small samples sizes (Lehmann 1998; Conover 1999), or by a large-sample or chi-square 

approximation (Helsel and Hirsch 1995) (Table E1). The null and alternative hypotheses are as 

follows: 

H0: All of the seasonally grouped subsets of data have identical distributions. 

HA: At least one group differs in its distribution. 

In other words, do the measurements taken in one quarter of the year differ significantly from the 

measurements taken in any other quarter of the year? 

To conduct the test, the data are ranked from smallest to largest, from 1 to N. If H0 is true, the 

average rank for each of the k seasonal groups should be similar and also be close to the overall 

average of the N data. When HA is true, the average rank for some of the groups will differ from 

others, reflecting the difference in magnitude of its observations. The test statistic, K, will equal 

0 if all groups have identical average ranks and will be positive if group ranks are different. The 

distribution of K when H0 is true is approximated by a chi-square distribution with k-1 degrees of 

freedom (df), where k is the number of seasons (Helsel and Hirsch 1995). For example, for 

quarterly data, k = 4 and df = 3.  

All N observations are given a numerical rank from 1 to N, smallest to largest. When 

observations are tied, the average of their ranks is assigned to each (i.e., if observations 6 and 7 

have the same value, assign 6.5 as the rank for both). These ranks, Rij, are then used for 

computation of the test statistic. Within each group, the average group rank jR  is computed as 

follows: 
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The average group rank, jR , is compared to the overall average rank,   2/1NR  , squaring 

and weighting by sample size, to form the test statistic K: 

  






 
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k

1j

2
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2

1N
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1NN
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K

 

Reject H0 if  
2

1-k,1K   , the 1- quantile of a chi-square distribution with k-1 degrees of 

freedom; otherwise do not reject H0 (Gilbert 1987, Table A19). 

For the minimum, the Idaho Department of Environmental Quality suggested data requirements 

(i.e., 3 years of quarterly data) N = 12, nj = 3, and k = 4. Where, N is the number of samples, nj is 

the size of the j
th

 group (years of seasonal data), and k = number of seasons. If the data cover 

only a partial year, the number of data points for one season may differ from those of another. 

Thus, nj may differ depending on the season. The above equation reduces to the following: 
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Table E1. A portion of the quantiles of the chi-square distribution with k-1 degrees of freedom. 

Degrees of 
Freedom 

(k-1) 

Confidence Level 

0.900 0.950 

1 2.71 3.84 

2 4.61 5.99 

3 6.25 7.81 

4 7.78 9.49 

5 9.24 11.07 

6 10.64 12.59 

7 12.02 14.07 

8 13.36 15.51 

9 14.68 16.92 

10 15.99 18.31 

11 17.28 19.68 

If the regulated entity discovers a seasonal trend to the collected water quality data, then this 

trend needs to be removed before continuing with further statistical testing. To remove the 

seasonal trend, apply the following calculations: 

Step 1: Calculate the mean for all values from the same season in different years, kx . 

Step 2: Calculate the universal mean for all values in the data set, NX . 
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Step 3: For each measurement, subtract the seasonal mean, kx  and add the universal mean, NX , 

to calculate the seasonally adjusted measurement. The seasonally adjusted values have lower 

overall variance due to removal of seasonal fluctuations. 

E.2. Example 

Table E2 summarizes the Kruskal-Wallis test calculations as applied to wells B1 and B2 in the 

example data set of Table B1. The total dissolved solids (TDS) values are ranked in ascending 

order from 1 to N = 12. The average quarterly ranks (Rj(1), Rj(2), Rj(3), Rj(4)) and the test 

statistic, K, are calculated, and the resulting K statistic for each well is compared to the chi-

square values from Table E1. In this case, the conclusion is that well B1 has statistically 

significant seasonal variability. The above three steps for removing the seasonal variability are 

applied to well B1’s data and the resulting transformation is listed in the “Adjusted B1” column 

in Table E2. The result of the transformation is a data set with the same mean (254) but a 

significantly lower standard deviation (9.77 compared to 30.07). 
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Table E2. Testing for seasonality using the Kruskal-Wallis test. 

 Well B1 Rank Adjusted B1 Well B2 Rank 

Year 1—1
st
 quarter 305 12 266 252 7.5 

Year 1—2
nd

 quarter 228 3 264 251 6 

Year 1—3
rd

 quarter 258 7 252 245 3 

Year 1—4
th
 quarter 259 8 268 252 7.5 

Year 2—1
st
 quarter 285 10 246 260 10 

Year 2—2
nd

 quarter 210 1 246 248 5 

Year 2—3
rd

 quarter 274 9 268 275 12 

Year 2—4
th
 quarter 240 5 249 272 11 

Year 3—1
st
 quarter 290 11 251 256 9 

Year 3—2
nd

 quarter 216 2 252 246 4 

Year 3—3
rd

 quarter 248 6 242 218 1 

Year 3—4
th
 quarter 235 4 244 225 2 

Determination of Seasonality 

Rj—1
st
 quarter  11   8.8 

Rj—2
nd

 quarter  2   5 

Rj—3
rd

 quarter  7.3   5.3 

Rj—4
th
 quarter  5.7   6.8 

K =   9.7   2.1 

Critical statistic =  7.81   7.81 

Seasonal variability?  Yes   No 

  Adjusting for Seasonality   

Mean_1 293.3     

Mean_2 218     

Mean_3 260     

Mean_4 244.7     

Mean_total 254  254   

Std_dev 30.07  9.77   

E.3. Comparing Seasonally Varying Populations  

Where seasonality exists in background data, it is vital that the seasonal effect be removed from 

well data prior to estimating summary statistics, defining a decision threshold, or comparing 

downgradient data with background. For example, the standard deviation of well B1’s raw TDS 

values is 30.0 compared to 9.8 after adjusting for seasonality (Table E2). Failure to account for 

seasonal variability can lead to statistical conclusions that are grossly inaccurate (Appendix F, 

section F.2 example).  
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Appendix F. Secular Trends  

F.1. Testing for Secular Trends Using the Mann-Kendall Test 

One of the most important requirements when determining background ground water quality 

levels for the constituent(s) of concern in upgradient monitoring wells is deciding whether 

temporal stationarity (steady state) exists. If the system is not in a steady state condition, then 

background is undefined and setting a level for comparison is not statistically valid and can lead 

to erroneous results. In situations where a secular trend exists, a detrending procedure can be 

applied (Appendix L, section L.4) but only if detrending is both statistically and 

hydrogeologically justified.  

There are several methods for determining whether the collected data show an increasing or 

decreasing trend through time. The United States Environmental Protection Agency (EPA 1988) 

suggests two methods. One, linear regression analysis, is somewhat simple to apply with 

commercial software, wherein the slope is calculated and tested for statistical significance. 

Though this method may be easy to perform, The Idaho Department of Environmental Quality 

(DEQ) does not recommend it. Linear regression is heavily influenced by outliers (Kimsey 1996) 

and also makes stronger assumptions about the distribution of the data (normality of residuals, 

constant variance, and linearity of the relationship) (Helsel and Hirsch 1995). Instead, DEQ 

recommends that the regulated entity use the Mann-Kendall test for trend to determine if a steady 

state condition exists within the data. 

The Mann-Kendall test is a nonparametric alternative to regression. A major advantage is that no 

assumption of normality is required. In addition, the procedure is useful if there are missing data 

values (e.g., a quarterly sample was missed). Data reported as less than the detection limit are 

assigned a common value smaller than the smallest measured value, typically one-half of the 

detection limit. The actual value does not matter because the test only uses the relative 

magnitudes of the data rather than the specific data values (Gilbert 1987). The procedure 

outlined below is for cases when the number of collected background ground water quality data 

points is 40 or less (Gilbert 1987; Gibbons 1994). For situations where more than 40 data points 

are available, the regulated entity is referred to the literature (Mann 1945; Kendall 1975; Gilbert 

1987).  

Refer to Table F1 for the general procedure in setting up the test. First, order the data as shown 

by sampling date: N21 x,...,x,x where xi is the measured value for sampling date i. Second, record 

whether the difference ii' xx   is positive or negative (where event i’ follows i) for all possible 

pairs as well as the number of total positive and total negative differences in the data set. 

This procedure is equivalent to defining 

 
















0x xif  1

0x xif    0
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and computing the Mann-Kendall statistic as  
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  
 


1-n

1i 1ki'

ii' xxsgnS , 

S is equal to the number of positive differences minus the number of negative differences in the 

bottom two right-most entries of Table F1. Conceptually speaking, if S is a large positive 

number, then more measurements taken later in time tend to be larger than those taken earlier. 

Similarly, if S is a large negative number, then more measurements taken later in time tend to be 

smaller. 

The Mann-Kendall probability tables (Kendall 1975) are used to test the null hypothesis of no 

secular trend (statistically insignificant slope) versus the corresponding alternate hypothesis of a 

significant upward or downward slope. The tabulated probability corresponding to the absolute 

value of S is compared to the test’s specified significance level (); H0 is rejected if the tabulated 

probability is less than . 

If the Mann-Kendall test shows that there is no statistically significant temporal trend in the 

water quality data, then statistical analysis and calculation of decision thresholds (Appendices 

H–K) may proceed. If a trend exists, then a detrending procedure such as described in 

Appendix L should be used to estimate an interim decision threshold. 

Table F1. Mann-Kendall test set up. 

Measurement Ordered by Time     

x1 x2 x3 … xN-1 xN Number of 
 + differences 

Number of 
 – differences 

 x2 – x1 x3 – x1  xN-1 – x1 xN – x1   

  x3 – x2  xN-1 – x2 xN – x2   

    xN-1 – x3 xN – x3   

    … …   

    xM-1 – xN-2 xN – xN-2   

     xN – xN-1   

      Total number of 
+ differences 

Total number of 
- differences 

As noted in Appendix E, section E.3, deseasonalized data should be used when testing for a 

trend, because the Mann-Kendall results will be biased by seasonal variability (Appendix F, 

section F.2 example). An alternative to the Mann-Kendall test is the seasonal Kendall test, which 

estimates the trend by adjusting for seasonal variation. The test performs well when the product 

of the number of seasons and number of years is at least 25 (Helsel and Hirsch 1995). For 

example, if 3 or more years of independent monthly data or 7 years of quarterly data are 

available, the seasonal Kendall test can be used to detect a seasonally adjusted trend. The 

seasonal Kendall test is not available in ProUCL, however, so other software packages must be 

used (http://www.gns.cri.nz/Home/Our-Science/Energy-Resources/Groundwater; or 

http://www.xlstat.com/en/learning-center/tutorials/identifying-a-trend-using-mann-kendall-test-

with-xlstat-time.html). Alternatively, the data can be deseasonalized manually following steps 1–

3 in Appendix E, section E.1 prior to applying the Mann-Kendall trend test.  

http://www.gns.cri.nz/Home/Our-Science/Energy-Resources/Groundwater
http://www.xlstat.com/en/learning-center/tutorials/identifying-a-trend-using-mann-kendall-test-with-xlstat-time.html
http://www.xlstat.com/en/learning-center/tutorials/identifying-a-trend-using-mann-kendall-test-with-xlstat-time.html
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F.2. Example Using ProUCL 5.0 

The total dissolved solids (TDS) measurements from well B1 (Table B1) are used to illustrate the 

importance of deseasonalizing data prior to testing for a trend. For this example, we use a 

significance level of  = 0.05. As noted in Appendix E, section E.3, erroneous summary 

statistics, statistical tests, and compliance decisions are possible when evaluating data with 

statistically significant seasonal variability. Figure F1 shows the results of applying ProUCL’s 

Mann-Kendall trend test to the raw TDS data. Considerable variability is apparent and second-

quarter values appear to be much lower than at values measured at other times of the year. 

Despite the visual indication of a possible trend, the Mann-Kendall test fails to reject the null 

hypothesis (H0 = no trend) because of the large range in raw data values (TDS plot scale = 208 to 

308). 

Figure F2 summarizes the results of the Mann-Kendall test on deseasonalized TDS data 

(Appendix E, Table E3). In contrast to the raw data, the scale range is 241 to 269 parts per 

million, less than 30% of the raw data’s scale range, reflecting the marked decrease in the 

standard deviation before and after deseasonalization (raw data = 30.0; deasonalized = 9.8, 

Appendix E).  

 
Figure F1. Results of applying a Mann-Kendall test to the raw TDS data from well B1 in Table B1. 
Sen’s slope is shown in red and an ordinary least-squares linear regression slope, in black. H0 is 
not rejected. 
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Figure F2. Results of applying the Mann-Kendall test to well B1’s deseasonalized TDS data 
(Appendix E, Table E3). H0 is rejected, and the correct conclusion that a trend does exist is 
achieved. 
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Appendix G. Data Pooling 

G.1. Combining Data Sets for Normally Distributed Data 

The advantage of combining background data from multiple upgradient monitoring wells is that, 

by increasing sample size, greater power can be realized for decision thresholds defined at a 

given confidence level. However, data sets can only be combined if it can be shown that they are 

statistically similar and the conceptual site model permits pooling of data from wells in different 

parts of the aquifer system as discussed in Section 3.2, “Evaluation of Hydrogeologic Data.” Any 

differences in statistical subpopulations of ground water quality occurring at different depths and 

hydrogeologic units must be respected. Above all, water quality data representing different 

subpopulations must not be pooled. In such cases, background water quality must be defined 

separately for different subpopulations and comparisons of downgradient water quality with 

background must be conducted in a manner that is hydrogeologically defensible in the context of 

the site conceptual model.  

The Idaho Department of Environmental Quality (DEQ) recommends that the data sets from two 

wells first be tested for similar variance using the F-test; then, if their variances are similar, they 

can be tested for similar means using the t-test (Larsen and Marx 1986). For two independent, 

normally distributed random samples (X and Y) having means of x  and y and variances of   
  

and   
 , respectively, then the null hypothesis H0 for the F-test is that   

  =   
 . H0 can be rejected 
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where m and n are the sample size for each data set. For the case of  = 95% and m and n, both 

equal to 12 data points (DEQ’s minimum recommended data requirement), H0 can be rejected if 

  
 /  

  is either  0.29 or  3.48.  

If H0 is rejected, then the data sets cannot be combined. If H0 cannot be rejected, then the data 

sets can be tested using the two-sample t-test. For two independent, normally distributed random 

samples (X and Y) having means of x  and y and statistically equal variances of   
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For the case of  = 95% and m and n, both equal to 12, so H0 can be rejected if t is either  -2.07 

or  2.07. If the null hypothesis is rejected, then the data sets cannot be combined.  

G.2. Example 

Appendix G uses deseasonalized well B1 data. Having adjusted background well B1 for seasonal 

affects and having found that both data sets (well B1 and well B2) are normally distributed 

(Appendix D), the question arises whether the two data sets can be combined into a single 

background data set. Looking at the descriptive statistics, the means are similar (254 parts per 

million [ppm] for well B1 and 250 ppm for well B2), and the standard deviations are similar 

(9.77 ppm for well B1 and 16.4 ppm for well B2), so the implication is that the data could be 

combined. To check if the variances are statistically similar, the F-test is conducted first. 

818.2
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For the case of  = 95% and m and n, both equal to 12 data points, so   
 /  

  must be  0.283 or 

 3.66 in order to reject H0. In this case, H0 cannot be rejected.  

Next, the t-test is applied to the two data sets. 
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Since the test statistic (0.726) is neither  -2.0739 nor  2.0739, H0 cannot be rejected. 

Therefore, the total dissolved solids (TDS) data sets can be combined for the purposes of setting 

a background ground water quality level. 

G.3. Combining Well Data Sets for Lognormally Distributed Data 

The process for determining whether background data can be combined for lognormally 

distributed data is the same as that for normal data, except that the calculations of the mean and 

standard deviation differ. The following equations can be used to calculate the arithmetic mean 

and standard deviation before applying the F-test and t-test (Gilbert 1987). 
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where N is the size of the sample.  

The decision to pool data is made using transformed data. Interpretation of the mean and 

standard deviation in original scale units can be obtained using the following equations: 
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G.4. Combining Well Data Sets for More Than Two Wells or 
Nonparametrically Distributed Data 

Levene’s test (Levene 1960) can be used to check the assumption of homogeneity of variance if 

there are more than two wells to be pooled. The formula is  
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where iijij meanYZ  . The group means of the Zij are .iZ  and the overall mean of Zij is ..Z . N 

is the overall sample size; k is the number of subgroups (i.e., number of background wells to be 

pooled); and Ni is the sample size for the i
th

 subgroup. If the data are normally distributed, all 

calculations are based on the original scale units. If the data are lognormal, all calculations are 

based on logtransformed data.  

As with normal and lognormal data, nonparametric data sets need to be checked for homogeneity 

of variance before a comparison of medians can be performed. Levene’s test can be extended 

(Brown and Forsythe 1974) for working with the medians of the data sets. In the above formula, 

iijij medianYZ   and other terms remain the same.  

Levene’s test rejects H0 (  
  =   

 ) if W > F(, k-1,N-k) where F(, k-1,N-k) is the upper critical value of 

the F distribution with k - 1 and N - k degrees of freedom at a significance level of . 

If H0 is rejected, then the data sets cannot be combined. If H0 cannot be rejected, then the 

Kruskal-Wallis test can be applied to determine if the subgroup medians are statistically similar 

and the k data sets can be combined. The Kruskal-Wallis test is described in Appendix E. 

The Shapiro-Wilk test for normality (Appendix D) can be used to determine if the combined data 

set is normally or lognormally
§
 distributed; ProUCL 5.0 uses the Anderson-Darling and 

                                                 

§
 by transforming the data to their logarithmic equivalents 

file:///C:/Users/jwhite/Documents/Offline%20Records%20(TP)/eda3673.htm
file:///C:/Users/jwhite/Documents/Offline%20Records%20(TP)/eda3665.htm
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Kolmogorov-Smirnov tests to determine if the data are gamma distributed. If the data are 

parametrically distributed, then a parametric decision threshold can be calculated (Appendix H 

or J). If the data prove to be non-normal and nongamma, then the data should be logarithmically 

transformed and the Shapiro-Wilk test repeated to determine if a lognormal distribution is an 

option. If the data are found to be nonparametrically distributed, then a nonparametric decision 

threshold can be calculated (Appendix I or K).  

References 

Brown, M.B. and A.B. Forsythe. 1974. “Robust Tests for Equality of Variances.” Journal of the 

American Statistical Association. 69: 364–367.  

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. New York, NY: 

Van Nostrand Reinhold.  

Larsen, R.J. and M.L. Marx. 1986. An Introduction to Mathematical Statistics and Its 

Applications. 2nd ed. Upper Saddle River: NJ: Prentice-Hall. 

Levene, H. 1960. Contributions to Probability and Statistics: Essays in Honor of Harold 

Hotelling. I. Olkin et al. eds. Stanford, CA: Stanford University Press.  

  



Statistical Guidance for Determining Background Ground Water Quality and Degradation 

57 

Appendix H. Parametric Upper Tolerance Limits 

H.1. Parametric Upper Tolerance Limit as a Decision Threshold 

This section of the guidance assumes that the regulated entity has a background data set that has 

been found to be in a steady state, to have no statistically significant seasonal effects or been 

corrected for seasonality, and to meet parametric distribution assumptions. In most cases, this 

procedure will be applied at a new site where future water quality measurements will be 

compared to background ground water quality measurements in the same wells (an intrawell 

analysis; Gibbons 1994). The intrawell upper tolerance limit (UTL) is used to set a background 

water quality threshold in a downgradient well for a constituent of concern using only data from 

that monitoring well.**  

When monitoring ground water quality, the compliance point samples are assumed to come from 

the same population as the background values until significant evidence of contamination can be 

shown (EPA 1992). Once the UTL is set, each future compliance sample is compared to the UTL 

(Fisher and Potter 1989; Gibbons 1994; Kimsey 1996). To minimize the false negative rate and 

reduce the need for verification resampling, a specified exceedance rate (coverage) is tolerated, 

for example, no more than 1 exceedance in the next 20 comparisons (95% coverage). If this rate 

is exceeded, then significant evidence of contamination is indicated. In setting compliance limits, 

the Idaho Department of Environmental Quality (DEQ) suggests that UTLs be set so that 95% of 

the tested samples (coverage) are below the limit with 95% confidence. Therefore, in this 

discussion, the compliance standards will be calculated for 95% confidence and 95% coverage.  

UTLs define a range within which some proportion of the population (the coverage; in this case, 

95%) will fall some proportion (in this case 95%) of the time. The limit is calculated using the 

following formula: 

sxUTL K  

where UTL is the upper tolerance limit, x  is arithmetic mean of the background data, s is the 

arithmetic standard deviation of the data, and K is a constant that changes depending on the 

proportions used (Gibbons[1994] provides the complete mathematical formulation). Table H1 

provides examples of K factors for 95% coverage and 95% confidence. The process for setting 

tolerance intervals for lognormally distributed data is the same as that for normal data, except 

that the UTL is set for and compared to the log-transformed data values. For gamma-distributed 

data, DEQ recommends using software that is capable of estimating decision thresholds for a 

gamma population distribution (e.g., ProUCL 5.0). 

                                                 

**
 A UTL can also be defined for interwell data comparisons by defining background water quality in an ensemble 

of upgradient wells and a UTL that is calculated from those data; the UTL is then applied to downgradient wells to 

determine compliance (EPA 2009). 
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Table H1. Partial table of factors (K) for constructing one-sided normal upper tolerance limits at 
95% confidence and 95% coverage. 

Sample Size 95% Coverage Sample Size 95% Coverage 

8 3.188 16 2.523 

9 3.032 17 2.486 

10 2.911 18 2.453 

11 2.815 19 2.423 

12 2.736 20 2.396 

13 2.670 25 2.292 

14 2.614 30 2.220 

15 2.566 35 2.166 

Sources: Complete tables in Gibbons (1994) and Guttman (1970). 

H.2. Example 

As was shown in Appendix G, the sample total dissolved solids (TDS) data for background well 

B1 and background well B2 could be combined into a single data set of 24 data points. The 

resulting data set is normally distributed and has a mean of 252 parts per million (ppm) and a 

standard deviation of 13.34 ppm. The appropriate K factor, therefore, as interpolated from 

Table H1, is 2.313 and the 95% UTL is  

ppm 8.28234.13*313.2522UTL   

As long as no more than 5% of future TDS measurements exceed this threshold, the constituent 

of concern is deemed not to be affected by the facility’s operation. Should a future exceedance of 

the UTL violate the 95% coverage criterion (e.g., six exceedances in 100 future sampling 

events), then water quality would be deemed to be degraded. As Gibbons (1994) points out, the 

UTL’s specification of a coverage makes verification resampling unnecessary because a 

specified number of exceedances are expected and give the method its power without a 

verification requirement.  

Appendix K provides an example illustrating how decision thresholds are applied and interpreted 

using ProUCL 5.0’s output. 
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Appendix I. Nonparametric Upper Tolerance Limits 

I.1. Nonparametric Upper Tolerance Limit as a Decision Threshold 

For background data sets that are not parametrically distributed but meet the steady state 

condition and have been corrected for seasonal effects, a nonparametric upper tolerance limit 

(UTL) can be used to set a decision threshold for the constituents of concern. In most cases, this 

method will be applied to a new site where future water quality measurements will be compared 

to background ground water quality measurements in the same well (an intrawell analysis; 

Gibbons 1994). Table I1 shows the background sample sizes (N) required to achieve the desired 

coverage at varying confidence levels. The UTL is set equal to the highest value in the 

background data set using N seasonally adjusted background sample values. 

For example, to be 85% confident (column 1, row 5) that 90% of future comparisons (column 7) 

will fall below the UTL, then the highest background data value of the most recent 19 

measurements is used as the limit. For 95% confidence and 95% coverage, background sample 

size must be at least 59.  

Table I1. Sample sizes for nonparametric upper tolerance limits.
a
 

1- 
q=0.50

0 
0.700 0.750 0.800 0.850 0.900 0.950 0.975 0.980 0.990 

0.700 2 4 5 6 8 12 24 48 60 120 

0.750 2 4 5 7 9 14 28 55 69 138 

0.800 3 5 6 8 10 16 32 64 80 161 

0.850 3 6 7 9 12 19 37 75 94 189 

0.900 4 7 9 11 15 22 45 91 144 230 

0.950 5 9 11 14 19 29 59 119 149 299 

a. q is the proportion of the population that is covered by the tolerance interval. The tabulated quantity, X, 
is the required sample size (N or greater) to ensure that the probability of at least q of all future samples is 

greater than or equal to 1 –  (Conover 1999, Table A5). 

I.2. Example 

Suppose that the total dissolved solids (TDS) data in the example data set had been 

nonparametrically distributed. In that case, with a pooled background sample size of 24, Table I1 

would indicate that 95% coverage could be obtained at no better than a 70% confidence level 

(first row, eighth column). Where the sample size required to achieve a specified confidence 

level and coverage is less than the available background sample size, set the UTL equal to the 

highest value of the N most recent background values. To achieve 90% coverage at a 90% 

confidence, the UTL is equal to the highest of the most recent 22 seasonally corrected TDS 

values in Table B1 (268 parts per million). The new observation should be seasonally adjusted 

when comparing to the UTL. 

Appendix K provides an example illustrating how decision thresholds are applied and interpreted 

using ProUCL 5.0’s output. 
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Appendix J. Parametric Upper Prediction Limits 

J.1. Parametric Upper Prediction Limit as a Decision Threshold 

This section of the guidance pertains to data sets that have been corrected for seasonality and 

show no statistically significant secular trend, and are parametrically distributed. Downgradient 

ground water quality will be compared to the limit to detect degradation. A parametric upper 

prediction limit (UPL) will be set on the basis of upgradient water quality data (from either 

pooled or individual wells). As in Appendix H, the arithmetic mean and standard deviation for 

lognormal distributions must be correctly calculated (Appendix G, section G.3) and the UPL 

defined for logarithmically transformed data. 

In interwell comparison, future measurements in multiple downgradient wells are compared to 

an UPL based on background ground water quality data from upgradient wells (possibly pooled; 

Appendix G). To reduce the sitewide false positive rate, any exceedance encountered is verified 

through resampling (Gibbons 1994, sections 1.5 and 1.6). Within the context of this guidance, a 

verification sample is a sample collected to provide statistical verification of a possible 

exceedance (Section 4.5 “Verification Resampling”). It is not a measurement confirmation (i.e., 

duplicate) sample collected to document analytical precision. Therefore, verification samples 

must be temporally independent of the initial sample and of each other; in other words, sufficient 

time must elapse between the initial sampling and both resampling events to ensure statistical 

independence of all three measurements. 

The method for verification resampling adopted by the Idaho Department of Environmental 

Quality (DEQ) for wastewater reuse permits and Resource Conservation and Recovery Act 

facilities is to allow the facility to take two subsequent verification samples. If one or both 

verification samples exceed the UPL, then the initial exceedance is confirmed. This verification 

resampling scheme is referred to as “one of three samples in bounds” (Gibbons 1994; EPA 2009) 

and has the lowest false negative rate and highest power of the three verification schemes 

discussed by Gibbons. Table J1 gives multiplication factors (K) for the UPL formula: 

U sxPL K  

where x  is the mean of N upgradient background measurements and s is their standard 

deviation. Note that the K factor depends only on the number of future comparisons. In general, 

the larger the number of future comparisons, k, the higher the K factor and the UPL; conversely, 

the larger the background sample size, N, the lower the K factor and UPL. The number of future 

comparisons, k, is defined as: 

k = [number of measurements to be collected per well per year] 

  [number of years]   [number of wells]   [number of COCs]  

For example, for a downgradient well that will be sampled four times a year for 5 years (the 

permit reapplication period) and analyzed for two constituents of concern, k = 1 x 4 x 5 x 2 = 40 

comparisons.  

If the upgradient, background well data cannot be pooled, then a separate UPL will be 

determined for each upgradient well and decisions made as to which downgradient wells will be 
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compared to which upgradient wells. These decisions will affect the value of N and k that are 

applicable for different downgradient wells because the upgradient background data sets will 

differ. Note that the K factors in Table J1 increase only slightly for k > 50; if K factors are 

required for higher k, they can be estimated by extrapolation. 

Table J1. K Factors at = 0.05 for a verification protocol where one or both verification resamples 
must confirm the initial exceedance.  

 k = Number of Future Comparisons 

N 10 20 30 40 50 

4 2.02 2.42 2.65 2.82 2.94 

8 1.37 1.61 1.75 1.84 1.92 

12 1.21 1.42 1.54 1.62 1.68 

16 1.14 1.33 1.44 1.52 1.58 

20 1.10 1.28 1.39 1.46 1.51 

24 1.08 1.25 1.35 1.42 1.47 

36 1.03 1.20 1.29 1.36 1.41 

48 1.01 1.17 1.27 1.33 1.38 

Source: Gibbons (1994), Table 1.6, as prepared by Charles Davis based on results in Davis and McNichols 

(1987). 
Notes: Bold values indicate K factors that would apply to 5 years of quarterly future measurements (e.g., 20 

comparisons of one constituent of concern [COC] for one well; 40 for two wells or for two COCs at one well) 
and for various background sample sizes, each representing 3 years of quarterly data collected at 1, 2, 3, or 
4 background wells. 

J.2. Example 

The pooled total dissolved solids (TDS) background data set from wells B1 and B2 has an 

overall N, x , and s of 24, 252, and 23.8, respectively. For a 5-year permit reapplication period, 

with quarterly samples to be collected at two downgradient wells and a single constituent of 

concern (TDS), k is 5*4*2=40 and the K-factor read from Table J1 is 1.42. The UPL is therefore  

UPL = 252 ppm + 1.42 (13.34) = 271 ppm. 

Future measurements from the downgradient well will be compared to this UPL over the 

monitoring period. Every exceedance triggers a verification resampling event using the protocol 

specified in Table J1. At each permit reapplication, the UPL will be reevaluated using all 

available data, including the new upgradient data collected since last application as well as 

previous data and verification samples. If the data are seasonally adjusted, then every new 

observation should be adjusted before comparing to the UPL. 

Appendix K provides an example illustrating how decision thresholds are applied and interpreted 

using ProUCL 5.0’s output. 
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Appendix K. Nonparametric Upper Prediction Limits 

K.1. Nonparametric Upper Prediction Limit as a Decision Threshold 

For data sets that are not parametrically distributed but are steady state, independent, and 

corrected for seasonal effects, a nonparametric prediction limit can be used to set background 

levels. Like nonparametric tolerance limits, nonparametric prediction limits require larger 

background sample size to provide high levels of confidence. The nonparametric upper 

prediction limit (UPL) is set equal to the maximum value out of N independent background 

samples required to achieve a specified confidence level for a specified number of future 

comparisons. Confidence level is a function of N, the resampling plan used, and the number of 

future comparisons k. For large k or small , a large number of background samples is required 

(Gibbons 1994).  

One assumption inherent in this procedure is that the downgradient monitoring well’s water 

quality data represents the same population as the upgradient (background) well(s) to which it is 

compared. The interwell analysis method could be applied even at new facilities in situations 

where the data from downgradient wells are insufficient to justify an intrawell analysis.  

As is the case with parametric UPLs, upgradient background data from multiple wells can only 

be pooled if the means and standard deviations of each upgradient well’s data set are statistically 

indistinguishable. For nonparametric data, the statistical test to check for statistical differences of 

the variances and medians is Levene’s test and the Kruskal-Wallis test, respectively (Appendix 

G). 

Table K1 (Gibbons 1994, chapter 2) summarizes confidence levels for various background 

sample sizes and future comparisons and the same verification sampling scheme discussed in 

Appendix J (take two verification samples, if one or both also exceed the UPL then exceedance 

is verified). Table K1 shows how, as background sample size increases, so does the confidence 

level; conversely, confidence level decreases as the number of future comparisons (k) increases.  

Table K1. Confidence levels for a nonparametric prediction limit where exceedance is verified 
when one or both verification resamples also exceed the limit. 

 k = Number of Future Comparisons 

N 10 20 30 40 50 60 80 100 

4 .5585 .4393 .3759 .3347 .3050 .2822 .2491 .2257 

8 .7616 .6522 .5836 .5348 .4976 .4678 .4225 .3890 

12 .8538 .7676 .7072 .6613 .6246 .5942 .5463 .5095 

16 .9023 .8356 .7852 .7449 .7115 .6831 .6368 .6001 

20 .9305 .8785 .8369 .8024 .7729 .7473 .7044 .6695 

25 .9516 .9126 .8798 .8516 .8268 .8047 .7668 .7350 

35 .9729 .9492 .9279 .9087 .8912 .8751 .8463 .8211 

50 .9858 .9727 .9604 .9488 .9379 .9275 .9083 .8908 

Source: Gibbons (1994), Table 2.13, after Charles Davis based on results in Davis and McNichols 

(1993) 
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K.2. Example 

The pooled sample size for background total dissolved solids (TDS) data from upgradient wells 

B1 and B2 is N = 24. For a single constituent of concern and a 5-year permit reapplication period 

with quarterly samples to be collected at two downgradient wells, k is 40. The UPL is set equal 

to the highest value of the N seasonally adjusted background measurements (275 parts per 

million [ppm], Table E2). Table K1 indicates that future comparisons to this UPL will be at a 

confidence level no higher than about an 85%. If a higher confidence level were desired, then 

fewer future comparisons would have to be specified; for example, to achieve a 90% confidence 

with N = 24, k would have to be limited to about 24 comparisons (interpolating the sixth row of 

Table K1). This would correspond to a 3-year comparison period in the above example.  

Where the sample size required to achieve a specified confidence level and coverage is less than 

the available background, set the UPL equal to the highest value of the N most recent 

background values. To achieve a 90% confidence level with k = 20 future comparisons, as in the 

above example, interpolation within Table K1 indicates that N = 23. Therefore, set the UPL 

equal to the highest of the 23 most recent background sample values. 

K.3. Example Using ProUCL 5.0: Weakly Skewed Data 

In this example, ProUCL output is used to show how the various parametric and nonparametric 

decision thresholds calculated by the program are interpreted (and misinterpreted). The 

histogram of seasonally adjusted and pooled TDS data (Appendix G, section G.2), representing a 

statistically homogeneous background population, is shown in Figure K1.  

 
Figure K1. Histogram of seasonally adjusted and pooled TDS data for wells B1 and B2.  

With the seasonal trend removed, the sample data set has a substantially smaller data range and 

standard deviation (s = 30) compared to the raw data (s = 13.34; Appendix D, Figure D2). 

Hypothesis tests to determine the form of the distribution, however, lead to the same conclusion: 

at 95% confidence the sample data can be fit to a normal, lognormal, or gamma distribution. 
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Following the decision logic of Figure D1, however, the data will be assumed to represent a 

normally distributed population. 

The corresponding decision thresholds were calculated using the “Normal” option in ProUCL’s 

“Upper Limits/BTVs” menu. In the Options dialog window, the number of “Future k 

Observations” was set to 5 and the confidence level and coverage were left at their default 

settings of 95%. A portion of the output file, shown in Table K2, displays a variety of 

information, but only the bottom (highlighted) portion is relevant to this discussion of decision 

thresholds. 

Table K2. ProUCL output showing calculated decision limits for a normal distribution. 

 

The output generated by the program reiterates the results of a normal hypothesis test on the 

sample data and confirms that they represent a normally distributed population at 95% 

confidence (5% significance). The last four lines of the table summarize three different decision 

thresholds calculated from the background statistics that the Idaho Department of Environmental 

Quality (DEQ) recommends can be used in compliance decisions, where appropriate: 

Upper tolerance limit (UTL) at 95% confidence level, with 95% coverage = 282.8 ppm 

UPL at 95% confidence and 5 future observations = 286.0 ppm 

Upper simultaneous limit (USL) at 95% confidence and all future observations = 287.3 ppm 

Consistent with the definitions and compliance goals of these thresholds (Section 4, “Statistical 

Determination of Water Quality Degradation”), the UTL is less than the UPL which is less than 

the USL. This is typical for well-behaved symmetrical data sets. The UTL is the lowest because 

it has a built-in tolerance for a specified percentage of exceedances that are to be expected to 

occur in all future samples (5%, in this example). The USL is the highest threshold because it 

does not allow for any exceedance in any future sampling event. Unlike the UTL and USL, a 

UPL applies to the next specified number (k) of future sampling events in which no exceedance 

is expected. In this case, the choice of k = 5 represents a tradeoff between a much lower UPL for 
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k = 1 (Table K2, third line from bottom) and a higher threshold for larger k values. In this case, 

therefore, the UPL’s intermediate threshold represents a balance between the compliance goals 

of the UTL and USL.  

The importance of choosing the correct distribution for calculating a decision threshold can be 

illustrated by incorrectly assuming that this data set is nonparametric. Under that stipulation, the 

nonparametric UTL, UPL, and USL thresholds are 274.9, 274.3, and 275, respectively (Table 

K3), which are significantly lower than the thresholds for a normal population. If used to assess 

future compliance, the lower thresholds could lead to an unacceptable number of false positives 

(incorrect determinations of noncompliance) and increased monitoring costs.  

Table K3 summarizes the UTL, UPL, and USL values that were calculated from the same 

background data set, considering a gamma and lognormal distribution (which are equally good 

statistical representations of the sample data) as well as a nonparametric distribution and the 

normal distribution option shown in Table K2. The similarity of the decision threshold 

magnitudes for this data set indicates that the thresholds are insensitive to the choice of 

population distribution, a situation that lends confidence to the outcome of any statistical 

analysis. 

Table K3. Decision thresholds calculated from the same background data for different assumed 
population distributions. Where ProUCL uses two or more estimation methods, the estimates are 
averaged in the right-most column. 

 

K.4. Example Using ProUCL 5.0: Strongly Skewed Data 

In contrast to the preceding example, the choice of distribution for highly skewed data is a 

critical consideration in deriving statistically defensible decision thresholds. The data set 

evaluated in Appendix D, section D.4 illustrates the impact that an inappropriate choice can have 

when calculating decision thresholds from highly skewed data. That data set is markedly non-

normal, but the goodness-of-fit test results indicate that the data fit both a gamma and a 

lognormal distribution at a 95% confidence level.  
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Table K4 summarizes the calculated decision thresholds for the gamma and lognormal options. 

In contrast to the outcome in Table K3, the calculations for the skewed data set are very sensitive 

to the choice of population distribution: the lognormal decision thresholds are 200%–300% 

higher than their gamma counterparts.  

The root of the problem lies in transforming the data values to their logarithms: the 

transformation tends to mask the presence of extreme data values and, as discussed in 

Appendix D, section D.4, this inflates the standard deviation of the fitted lognormal distribution 

which in turn inflates the calculated decision thresholds. In contrast, the statistics of a gamma 

distribution are much less sensitive to outliers, so that decision thresholds based on the gamma 

option are not overly influenced by outliers (EPA 2009, 2013a, 2013b). 

This example underscores the importance of avoiding the lognormal option when modeling a 

data set in which the gamma distribution is a statistically valid alternative, particularly when the 

background data set is strongly skewed and/or contains multiple outliers that may not be 

representative of the background (uncontaminated) population. The gamma distribution is far 

less sensitive to the presence of extreme values and whenever possible should be used to model 

highly skewed data sets. 

Table K4. Comparison of decision thresholds calculated from log-transformed background data 
that should have been modeled with a gamma distribution.  
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Appendix L. Interim Decision Thresholds in the Presence of a 
Secular Trend 

L.1. Introduction 

Trending data present a special problem in ground water monitoring. Statistically, trending data 

cannot be used to estimate a mean and variance because these quantities change with time, so 

that many of the methods outlined in this document cannot be applied. This appendix provides 

guidelines that can be used to evaluate statistically significant changes in trend, specifically, to 

provide guidance for cases where (1) background water quality cannot be established because 

upgradient monitoring wells exhibit secular trends in water quality, (2) site practices are being 

modified to bring the system into compliance and downgradient water quality is or will be 

affected, or (3) and an interim compliance threshold is required for wells exhibiting a positive 

secular trend.  

In case 1, the facility is affected by secular trends originating off site and over which the 

regulated entity may have no control. In case 2, previous permitted use of a facility may have 

caused downgradient wells to exceed the primary and/or secondary standards (IDAPA 

58.01.11.200) or alternative concentration limits (ACLs) for the constituent of concern (COC); if 

so, the regulated entity may be implementing operational changes in response and future water 

quality trends may change as site background approaches a new steady state condition. In cases 1 

and 2, the method described in sections L.2 and L.3 should be followed to monitor the trend until 

procedures described in section L.4 can be applied and an appropriate decision threshold 

(Appendices H–K) calculated.  

In case 3, the existence of a positive trend suggests that the downgradient well may be out of 

compliance at some point in the future so that an interim decision threshold needs to be 

established to determine if and when that happens. The methodology in section L.4 is suggested 

for this purpose, but it places a substantial burden on the regulated entity to justify the statistical 

and hydrogeological rationale on which the method relies. 

L.2. Procedure for Setting a Decision Threshold to Monitor a Trend 

The assumption is made that if ground water is not currently in a steady state condition, then it is 

approaching a steady state condition because upgradient land uses or practices at the facility have 

stabilized. During this transition time, data still need to be collected, and limits are required to 

ensure that the approved practices are causing the water quality to continue to trend towards a 

future steady state condition. The following method is to be used for setting limits for 

background during the transition time.  

1. Each year, in the first quarter, determine if the system is trending or in steady state 

(Mann-Kendall test). 

a. The facility should recheck annually because it is likely that a trend will change with 

time as a new steady state condition is approached. For example, the COC will begin 

to level off as it approaches steady state. 

b. Once the COC has defined a statistically steady state condition, use the last 12 data 

points to establish tolerance or prediction intervals described in the appendices.  
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On a case-by-case basis where there is a new, mutually agreed-upon mean concentration 

for a particular COC, the standard deviation should be based on the (nontrending) 

background concentration in the last 12 sampling events. 

2. If the Mann-Kendall test shows the system has not achieved a new steady state, estimate 

the trend by the Sen’s slope method outlined in section L.3. 

In cases where a limit is needed for comparison with the trending data, use the 100(1-

)% lower confidence limit for an increasing trend and the 100(1-)% upper confidence 

limit for a decreasing trend. The difference between the next measurement and its 

previous measurement should be within these limits. In the case of an increasing trend, 

the regulated entity should use any exceedance as a warning that the current practices 

being used to reach a new steady state condition may not be adequate. An exceedance of 

the confidence limit during the transition period will be addressed on a case-by-case 

basis.  

L.3. Nonparametric Sen’s Slope Method to Estimate Trend 

Sen’s trend estimator is particularly useful for ground water monitoring: it is simple to compute; 

robust to outliers, missing data, and nondetects (Gibbons 1994); and it can be applied to as few 

as 2 years of quarterly data. The following fabricated example shows how to calculate Sen’s 

slope for a trending ground water total dissolved solids (TDS) time series. The data values in 

Table L1 have been rearranged from those in Table B1 to serve as an example of a positive data 

trend. 

Table L1. Fabricated well B1 data. 

Time ID 
Fabricated 

Well B1 

Year 1—1
st
 quarter 228 

Year 1—2
nd

 quarter 210 

Year 1—3
rd

 quarter 216 

Year 1—4
th
 quarter 248 

Year 2—1
st
 quarter 235 

Year 2—2
nd

 quarter 274 

Year 2—3
rd

 quarter 240 

Year 2—4
th
 quarter 259 

Year 3—1
st
 quarter 285 

Year 3—2
nd

 quarter 258 

Year 3—3
rd

 quarter 305 

Year 3—4
th
 quarter 290 
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Figure L1. Concentration versus time plot for fabricated well B1 data. 

Step 1: Lay out the concentration data in temporal order. 

Step 2: Calculate individual slopes Qi for each pair of monitoring events i and i’, where i’ follows 

i,  

ii

xx
Q

ii






'

'

 

and where x’i and xi are the measured concentrations during those monitoring events. Examples 

of the first few individual slope calculations are listed below: 

Slope
1 

= (210-228)/(2-1) = -18 

Slope
2 

= (216-228)/(3-1) = -6 

Slope
3 

=(248-228)/(4-1) = 6.67. 

The total number of individual slope comparisons is N’=n(n-1)/2. In this example, 

N’=(12)(11)/2=66. 

Time period 1 2 3 4 5 6 7 8 9 10 11 12 

TDS conc. 
(mg/L) 

228 210 216 248 235 274 240 259 285 258 305 290 

Qi  -18.0 -6.00 6.67 1.75 9.20 2.00 4.43 7.13 3.33 7.70 5.64 

   6.00 19.0 8.33 16.0 6.00 8.17 10.7 6.00 10.6 8.00 

    32.0 9.50 19.3 6.00 8.60 11.5 6.00 11.1 8.22 

     -13.0 13.0 -2.67 2.75 7.40 1.67 8.14 5.25 

      39.0 2.50 8.00 12.50 4.60 11.7 7.86 

       -34.00 -7.50 3.67 -4.00 6.20 2.67 

        19.0 22.5 6.00 16.3 10.0 

         26.0 -0.50 15.3 7.75 

          -27.0 10.0 1.67 

           47.0 16.0 
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Step 3: Rank the N’ individual slopes from smallest to largest. In this example, the ranking 

results are shown in the following table (midpoint ranks and their Qi values are highlighted):  

 

Qi Rank  Qi Rank  Qi Rank  Qi Rank  

-34.0 1 3.33 18 7.75 35 11.7 52 

-27.0 2 3.67 19 7.86 36 12.5 53 

-18.0 3 4.43 20 8.00 37 13.0 54 

-15.0 4 4.60 21 8.00 37 15.3 55 

-13.0 5 5.25 22 8.14 39 16.0 56 

-7.50 6 5.64 23 8.17 40 16.0 56 

-6.00 7 6.00 24 8.22 41 16.2 58 

-4.00 8 6.00 24 8.33 42 19.0 59 

-2.67 9 6.00 24 8.60 43 19.0 59 

-0.50 10 6.00 24 9.20 44 19.3 61 

1.67 11 6.00 24 9.50 45 22.5 62 

1.67 11 6.00 24 10.0 46 26.0 63 

1.75 13 6.20 30 10.0 46 32.0 64 

2.00 14 6.67 31 10.6 48 39.0 65 

2.50 15 7.13 32 10.7 49 47.0 66 

2.67 16 7.40 33 11.1 50   

2.75 17 7.70 34 11.5 51   

Step 4: The trend estimate, S, is the median of the individual slopes. If N’ is odd, S is the middle 

slope, Q(N’+1)/2; if N’ is even, S=1/2*(Q(N’/2)+Q(N’+2)/2). In this example, the estimated slope of the 

data trend is the average of the 33
rd

 and the 34
th

 Qi values (highlighted in yellow). Therefore 

S=(Q33+Q34)/2= (7.4+7.7)/2=7.55 milligrams per liter (mg/L). In other words, the TDS 

concentration increased during the 3-year monitoring period at an average rate of 7.55 mg/L per 

quarter. 

Step 5: Calculate the variance of the original data using the following formula (Kendall 1975): 

)]52)(1()52)(1([
18

1
)var(

1

 


pp

q

p

p tttnnnS

 

where n is the sample size, q is the number of data values that have ties, and tp is the number of 

occurrences of each tie in Table L1. In this example, there are no tied data values, so n=12, q=0 

and the tp are all zero. Therefore,  

)]52)(1(
1




pp

q

p

p ttt = 0 

and 

)var(S =
18

1
[(12)(11)(29)-0] = 212.67 
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Step 6: To define a confidence limit for a future decrease in the absolute rate of change (either 

positive or negative), calculate the lower confidence limit (LCL) for an increasing trend or the 

upper confidence limit (UCL) for a decreasing trend.  

2

)var('

:..

1

1

SZN
M

LCL




 
 

2

)var('

:..

1

2

SZN
M

LCU




 

where Z is the score of a standard normal population with mean = 0 and standard deviation = 0, 

and M1 and M2 are the rank orders for the ranked individual slopes in step 3. If M1 and M2 are 

not integers, interpolate from the nearest neighboring ranked slopes. For example, if M1 = 3.7, 

the nearest neighboring ranks are 3 and 4, and the weighted average of the individual slopes from 

rank 3 and rank 4 is used. Therefore, since 3.7 is closer to 4, the individual slope at rank 4 is 

given more weight, so that the LCL = (4 - 3.7)*Q3+ (3.7 - 3)*Q4.  

In the above example, S is positive indicating an increasing trend. To detect a statistically 

significant future decrease in this slope, we are interested in defining a LCL. The 95% LCL for 

the estimated slope is  

01.21
2

67.21265.166
1 


M

 

and  

Q21.01=0.99*Q21+0.01Q22 = 4.6 mg/L 

That is, at 95% confidence, the LCL indicates that slopes computed with future quarterly data 

would have to be lower than 4.6 mg/L per quarter before a statistically significant slope change 

could be declared. Note that this LCL is a confidence limit for the slope of the trend; it is NOT 

used to compare individual future data points.  

This methodology provides a means to determine when a change in site practices (or natural or 

off-site hydrologic conditions) has a statistically significant effect on the slope of an existing 

trend. In practice, it is advisable to consider multiple future data points, specifically by 

computing slopes on subsets of data (e.g., biannually, if quarterly data are being collected). As an 

example, consider the data in Table L2 that represents two additional years of fabricated 

monitoring information on well B1. Figure L2(A) shows the estimated slope of the historic trend 

as well as its 95% LCL, computed as above. As shown in Figure L2(B), even a full year of 

additional data would decrease the overall four-year slope only slightly, and the 95% UCL of all 

four years’ data (7.6 mg/L/qtr) would still bracket the historic slope. As shown in Figure L2(C), 

the latest two years of data reveal a slope that is well below the LCL of the historic slope. 

Repeating the slope calculation after a second year of additional data become available shows a 
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further decrease in the slope of the biannual data set (Figure L2(D)). In addition, the 95% UCL 

of the latest two years’ slope (2.91 mg/L/qtr) no longer brackets the historic slope, so at 95% 

confidence, it can be concluded that by year 5 the slope of the recent trend has decreased in a 

statistically significant manner relative to the historic trend.  

When monitoring a secular trend for possible changes in slope, the Idaho Department of 

Environmental Quality (DEQ) recommends using the above procedure and annually recompute 

the slope of the most recent two years of quarterly data. Once the latest two-year slope is shown 

to fall outside both the UCL and LCL of the historic slope, then the secular trend is deemed to 

have changed in a statistically significant manner.  

Table L2. Two additional years of fabricated well B1 data. 

Time ID 
Time 

Period 
TDS 

(mg/L) 

Year 4—1
st
 quarter 13 294 

Year 4—2
nd

 quarter 14 305 

Year 4—3
rd

 quarter 15 290 

Year 4—4
th
 quarter 16 305 

Year 5—1
st
 quarter 17 309 

Year 5—2
nd

 quarter 18 295 

Year 5—3
rd

 quarter 19 306 

Year 5—4
th
 quarter 20 294 

Notes: total dissolved solids (TDS); milligram per 

liter (mg/L) 

 
Figure L2. An example of applying a biannual slope recalculation procedure to identify changes in 
slope as future data is collected.  
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L.4. Interim Process for Estimating a Decision Threshold in the 
Presence of a Trend 

The existence of a positive trend indicates that a well will be out of compliance at some point in 

the future and a decision threshold is required to determine when that situation occurs. However, 

the decision thresholds described in Appendices H–K are only valid for nontrending data. Before 

one can be computed, the trend must be quantified and removed so that background statistics and 

a decision threshold can be calculated.  

Doing so, however, requires that detrending can be justified in both a statistical and a 

hydrogeological sense. Specifically, the trend must be expected to remain unchanged for some 

time into the future. If site practices are being modified or if aquifer conditions such as recharge 

or dewatering rates change, there is no guarantee that the historic trend will continue indefinitely. 

To compute a decision threshold based on detrended data, it is up to the regulated entity to 

annually justify that the historic trend still applies (using Section L.3 “Statistical Characterization 

of Ground Water Quality” methodology). This requirement is necessary to ensure the integrity of 

the decision threshold that will be used for determining compliance. When the trend changes in a 

statistically significant manner, then the detrending procedure may need to be modified (e.g., by 

using a new trend slope) and further compliance decisions put on hold until a new, stable trend 

(or a new background level) is established. 

To compute an interim decision threshold based on detrended data, DEQ recommends the use of 

intrawell methodology, specifically, a Shewart-CUSUM control chart (Appendix N, section 

N.2). The following procedure, based on Gibbons (1994), pertains to an individual downgradient 

well’s time-series data; it assumes that (i) the trend is linear and statistically significant (e.g., as 

in Appendix F) and (ii) data detrending is justified. The decision logic is outlined in Figure L3 

and described in detail in the following steps. 

I. Quantify the trend and the decision thresholds:  

1. Detrend the data using the following procedure. 

i. Determine the regression slope and intercept, a0 and b, of the time-series data. 

ii. Detrend the raw data, xi, using a0 and b and the equation 
 

xi
detrended

 = a0 + [xi – (a0 + bt) ]  (Gibbons 1994, equation. 8.5) 
 

iii. Compute the trend residuals (xi – xi
detrended

) for each data value and check that their 

mean is zero (or acceptably close). 

2. As described in Appendix N, section N.2, calculate control chart limits using the 

detrended data (the xi
detrended

 values in Appendix N, section N.2).  

3. Plot a Shewart-CUSUM control chart using the undetrended data, xi ; declare an out-of-

compliance situation if future measurements exceed either of the control chart thresholds.  

II. Annually reevaluate the trend and decision thresholds: 
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1. Using the procedure in Appendix L, section L.2, determine if the trend of the past two 

year’s data remain within the bounds of the historic trend. That is, ensure that the slope of 

the most recent trend is within the 95% upper and lower confidence limits determined for 

the historic trend. 

2. If the trend of the most recent data is within the historic trend, then continue to use the 

existing control limits in the control chart. 

3. If the most recent data deviates from the historic trend, then recalculate a0 and b for the 

latest two years of quarterly data (or minimum 8 data values) and update the control chart 

decision thresholds (steps I.1 to I.3, above). The previous year’s data should also be 

compared against the revised decision threshold to ensure that the well was in compliance 

during the previous year. 

4. Repeat steps II.1 through II.3 annually to document that the current year’s data can 

justifiably be detrended.  

 
Figure L3. Recommended procedure for estimating interim decision thresholds in the presence of 
a trend (based on an approach outlined by Gibbons (1994) and the control chart methodology 
described in Appendix N). Parentheses indicate corresponding steps in the narrative process 
described in the text. 
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Appendix M. Example Scenario for an Existing Wastewater 
Reuse Facility With No Chemical Impact 

The majority of the wastewater reuse facilities using this guidance will probably be in this 

category. In addition to existing facilities, new facilities where previous land uses have altered 

the downgradient ground water at compliance wells from an ambient condition also fall into this 

category. As with other facilities, the first steps are to conduct descriptive statistics on the 

constituents of concern (COCs) for each background well (Section 3, “Statistical 

Characterization of Ground Water Quality,” Figure 2).  

Following the initial descriptive statistical documentation (Appendix B) and an evaluation of 

data independence (Appendix C), the distribution of the each COC should be determined 

(Appendix D) and its temporal behavior evaluated for statistically significant secular trends and 

seasonal pattern (Appendix E). The concentration versus time diagrams will likely indicate 

whether there is a cyclic nature to the data, but seasonality must be statistically demonstrated. 

Ideally, at least 3 years of quarterly data should be available for this analysis (wherein each 

quarter is tested in the same month). Some of the variation may be due to changing land uses 

(e.g., nearby agricultural activities and river and canal flows) as well as true seasonal effects such 

as precipitation patterns, evapotranspiration. The preferred method for determining seasonal 

stationarity is the nonparametric Kruskal-Wallis test (Appendix E). Once seasonality has been 

tested for and possibly removed, the resulting data sets should be tested for secular trends using 

the recommended nonparametric Mann-Kendall test (Appendix F). 

If the Mann-Kendall test shows no temporal trend for background ground water quality data, 

then the methodology in Appendix G should be used to determine whether data from multiple 

background wells can be pooled. If the Mann-Kendall test shows that there is a temporal trend, 

then an alternative method needs to be followed to define a decision threshold for future 

monitoring (Appendix L).  

After defining background ground water quality for each COC, decision thresholds for future 

monitoring are set. In most cases, the existing facility will have altered background ground water 

quality, and the process outlined in Appendix J can be used to set parametric prediction levels for 

future interwell comparisons for the COCs. To do so, the data set must (1) exhibit no temporal 

trends, (2) have no statistically significant seasonal effects or be corrected for seasonality, and 

(3) be parametrically distributed. Appendix K makes the same assumptions except that the data 

distribution is nonparametric. In either case, site conditions are such that downgradient water 

quality has been affected by the facility, requiring that interwell statistical methods be applied. 

Wherever possible, site conditions should be evaluated to determine if interwell comparisons are 

justified. For example, in situations where background ground water quality is highly variable, or 

aquifer heterogeneity makes it difficult or impossible to decide which upgradient well(s) should 

be compared to a downgradient well, then intrawell comparison procedures or modifications to 

those suggested in this document should be considered. For example, can background data in 

downgradient wells be filtered of outliers (Appendix N, section N.4) that may represent existing 

site impacts, prior to applying intrawell comparisons? Or could alternative methods for setting 

decision thresholds be used, such as Shewart-CUSUM control charts (Gibbons 1994)? Such a 
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decision may prove to be far more defensible for an existing facility than trying to force interwell 

comparisons where hydrogeologic conditions do not warrant them.  

The single greatest advantage to using intrawell methods (including variants such as Shewart-

CUSUM charts) is that decisions are solely based on the statistical behavior of COCs in 

individual wells rather than between wells whose upgradient versus downgradient hydrogeologic 

relationship may be suspect or unknown. In all cases, the use of intrawell comparisons at existing 

facilities are justified only if the regulated entity can demonstrate that the data set(s) to be 

considered as background for the COCs in downgradient wells have either not been affected by 

the facility’s prior operations or appropriately filtered of suspected contamination influences 

(e.g., outliers).  

References 
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Appendix N. Applying Intrawell Analysis at Existing Facilities 
When Interwell Methods are Inadvisable 

At existing facilities, large variations in natural background water quality across a site can make 

it difficult to identify hydrogeologically appropriate pairs of wells for interwell comparison. This 

problem that can be exacerbated by very slow ground water flow rates between wells. This 

increases the difficulty of identifying true exceedances from other confounding influences in an 

interwell comparison. For these reasons intrawell comparison, where it can be justified, is the 

method of choice for compliance monitoring (Gibbons 1994).  

At existing facilities intrawell comparison is preferred over interwell analysis whenever possible. 

Specifically, if historical background data in a downgradient well demonstrates that the 

constituents of concern (COCs) have not been impacted by the facility’s operations, then the use 

of intrawell methods may be justified for detection monitoring.  

To apply an intrawell monitoring method at an existing facility, the regulated entity must 

demonstrate that preexisting contamination was not present in the downgradient wells during the 

historical period selected for establishing the background level. The intrawell method that the 

Idaho Department of Environmental Quality (DEQ) suggests for monitoring preexisting facilities 

is the combined Shewhart-CUSUM control chart method. It is capable of detecting both 

immediate and gradual releases and is applicable to data sets containing up to 75% nondetects. It 

combines the power of the Shewhart control chart method, which is ideal for rapid detection of 

large releases, and the Cumulative SUM method that is sensitive to gradual releases. Data must 

be temporally independent, so that quarterly data are recommended, and should be screened for 

outliers or other evidence of preexisting impacts by the facility.  

N.1. Demonstrating that Intrawell Comparison is Appropriate for Site-
Specific Conditions 

The regulated entity should provide evidence that COCs in downgradient wells have not been 

affected by the facility. For example, based on an evaluation of historical data (outlier screening, 

seasonality, trends), the regulated entity may be able to demonstrate that a window of time exists 

for defining background COC levels for each well in the monitoring network. Outlier detection is 

addressed in Appendix N, section N.4. To check trend and seasonality of the historical data, refer 

to Appendices E and F.  

Alternatively, groups of upgradient and downgradient wells can be tested for statistical similarity 

(using methods of Appendix G) to identify those downgradient wells whose water quality is 

statistically indistinguishable from upgradient wells and whose future data could be analyzed 

using either interwell or intrawell methods. 

For each downgradient well that has not been affected by facility impacts, screen the historical 

COC data and remove outliers to establish an historic statistical baseline (e.g., Gibbons 1994, 

section 8.4.3). Justify using an intrawell comparison by demonstrating that no COCs have yet 

been detected in the downgradient well and that other indicator constituents show no significant 

trends (ASTM 1998; Cal EPA 2001). 
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N.2. Apply a Shewhart-CUSUM Control Chart Method to Detect Future 
Changes in Water Quality 

The Shewhart-CUSUM control chart procedure is a widely used intrawell comparison method 

that the United States Environmental Protection Agency (EPA) recommends for identifying a 

statistically significant increase in chemical concentrations at a single monitoring location (EPA 

1989, 1992, 2009; ASTM 1998; ITRC 2006; URS 2003; Gibbons 1994, 1999). DEQ 

recommends 12 background samples (i.e., 3 years of quarterly data) are needed to compute a 

standardized difference value and control limits against which subsequent measurements from 

the same well are compared. The method has been applied in an evaluation mode at various sites 

(e.g., Chou 2004) and has performed well. Because the method is sensitive to both gradual (long-

term) and sudden (short-term) increases, it allows for detection of facility impacts at different 

spatial and temporal scales. The method is applicable to data that are independent and normally 

distributed; hence a well's historic background data should be evaluated for temporal 

independence, or the analysis should be restricted to data that have been collected no more 

frequently than quarterly.  

The procedure can be implemented as follows: Let xi be a series of independent background 

observations i = 1, 2…., n (n = 12 at minimum). Let xj be a series of future monitoring 

measurements j = 1, 2, 3….. . Then, using the background and future data, the following steps 

are applied. For additional detail, see Gibbons (1994). Alternatively, a slightly modified 

procedure is described in Chapter 20.2 of EPA’s Unified Guidance (EPA 2009). 

1. Check the background and future data for temporal independence.  

2. Use the background data (xi) to compute x  and s  as estimates of the mean μ and 

standard deviation σ, respectively.  

3. Define three parameters (all in units of standard deviation) for the control chart:  

SCL—Shewhart control limit 

h—CUSUM control limit 

k—half the shift in standard deviation to be detected rapidly 

For ground water quality monitoring, experience has shown that values of SCL=4.5, 

h=5.0 and k=1 are appropriate. Other values may be used depending on the sampling 

scheme and sample size (Gibbons 1994; EPA 2009). 

 

4. For each future data value, compute its standard normal deviate, zj: 

s

xx
z

j

j




 

5. Compute the CUSUM statistic Sj for each future data value: 

 

])(,0max[ 1 jjj SkzS  ;  S0=0. 

If either zj exceeds the Shewart control limit (SCL) or if Sj exceeds the CUSUM control limit h, 

then a potential exceedance is indicated, triggering verification resampling that is temporally 
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independent of the initial sampling within a time frame based on consideration of site-specific 

ground water flow conditions and consultation with DEQ. Verification resampling corroborates 

the exceedance only if the verification measurement also exceeds either SCL or h. If an 

exceedance is not corroborated by verification resampling, then those data can be used in step 2 

to update the background data set for future comparisons. 

The power of the control chart method arises because the SCL is capable of detecting large, rapid 

deviations from background, whereas the CUSUM portion of the test is sequential: a small 

positive concentration shift over the preceding time period will slowly aggregate in the CUSUM 

statistic and eventually cause it to exceed the CUSUM control limit. Thus, the combined 

Shewhart-CUSUM method has the ability to detect rapid as well as gradual releases from a 

monitored facility. 

N.3. Example 

For this example, we assume that the fabricated data in the table have been screened and outliers 

removed, have been corrected for seasonality, and are free of any secular trend.  

Table N1. Background total dissolved solids measurements.  

Background 

sample 
number 

Background 
TDS, mg/L 

   

1 259 x = 251, s = 28.1, n= 12 

 2 228 

3 240 

4 216 

5 285 

6 235 

7 290 

8 274 

9 290 

10 228 

11 216 

12 248 

Notes: total dissolved solids (TDS); 

milligram per liter (mg/L) 
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Figure N1. Historical (background) total dissolved solids concentrations versus time. 

In this example, set h=5, SCL= 4.5, k=1 and calculate zi, zi-k and Si as outlined in Appendix N, 

section N.2. The calculated limits are summarized in Table N2 and plotted in Figure N2, 

demonstrating that both zi and Si are within specified limits. Therefore, the additional year’s 

monitoring data confirm that the system remains in compliance.  

Table N2. Calculated test statistics for current year’s monitoring data. 

Current Year’s 
Sampling Data 

Measured 

TDS (mg/L) 
zi zi-k Si 

1
st
 quarter 258 0.26 -0.74 0.0 

2
nd 

quarter 305 1.93 0.93 0.9 

3
rd

 quarter 289 1.36 0.36 1.3 

4
th
 quarter 268 0.61 -0.39 0.9 

Notes: total dissolved solids (TDS); milligram per liter (mg/L) 

 
Figure N2. Comparison of latest monitoring results to historical data and specified control limits. 
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N.4. Detection of Outliers in Background Data 

The following discussion outlines the steps necessary to detect outliers using Dixon’s method. 

Dixon’s test can be used when the number of suspected outliers is small. If m outliers are 

suspected, all m tests must be performed regardless of the outcomes of the previous m-1 test. If 

the m
th

 test exceeds the critical value, all m outliers must be rejected. If data are not normal in 

original scale, proper transformation should be applied. Once the data are transformed, the 

following steps then should be applied.  

1. Sort the data from lowest to highest, denoted by x(i) where i=1 to n.  

2. Calculated the average of the data, x . 

3. Calculated xx i )(
 for each observation and sort the difference from largest to 

smallest.  

4. Identify suspected outliers and their number, m. 

5. Calculate Dixon’s statistics using following formula (Gibbons 1994) for the m 

outliers, starting from the most extreme value.  

 

N Highest value Lowest value 

3–7 

)1()(

)1()(

xx

xx

n

nn



 
 

)1()(

)1()2(

xx

xx

n 


 

8–10 

)2()(

)1()(

xx

xx

n
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
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)1()1(

)1()2(
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
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
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6. Compare the statistic to following tabulated critical values (Gibbons 1994) and draw 

conclusions.  
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N 5% level 1% level N 5% level 1% level 

3 .941 .988 14 .546 .641 

4 .765 .889 15 .525 .616 

5 .642 .780 16 .507 .595 

6 .560 .698 17 .490 .577 

7 .507 .637 18 .475 .561 

8 .554 .683 19 .462 .547 

9 .512 .635 20 .450 .535 

10 .477 .597 21 .440 .524 

11 .576 .679 23 .421 .505 

12 .546 .642 24 .413 .497 

13 .521 .615 25 .406 .489 

Using the same fabricated data, we assume that there is one more observation in the historical 

data, the 13
th

 measurement with total dissolved solids (TDS) equal to 380 milligrams per liter 

(mg/L). Applying the steps outlined above results in Table N3. The ascending sorted 

observations x(i) is shown in column 3. The mean of the data, x , equals 260.7 mg/L. Therefore, 

|x - x |, sorted for each observation and its corresponding measured values are shown in columns 

4 and 5. The suspected number of outliers is 3 (m=3, the highest TDS and the two lowest TDS in 

the data set). Using Dixon’s formula in step 5 for n=12, starting with the most extreme value 

TDS=380 mg/L, Dixon’s statistic is (380-290)/(380-216)=0.549. It is significant at 5% level but 

not at 1% level comparing to critical values in the step 6 table. Continuing with the lowest 

TDS=216, using the same approach, Dixon’s statistic is 0.162, not significant at 5% level and 

1% level. Therefore, the observation with TDS=380 mg/L can be rejected and observations with 

TDS=216 should be retained for intrawell comparison.  
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Table N3. Background total dissolved solids measurement with fabricated outliers. 

Background 

Sample number 

TDS, 
mg/L 

Sorted 
TDS, x(i) 

Sorted xx   

Corresponding 

Background 

TDS, mg/L 

Dixon's 

Statistic 

1 259 x(8) 119.3077 380 0.549 

2 228 x(3) 44.69231 216 0.162 

3 240 x(6) 44.69231 216 0.162 

4 216 x(1) 32.69231 228  

5 285 x(10) 32.69231 228  

6 235 x(5) 29.30769 290  

7 290 x(11) 29.30769 290  

8 274 x(9) 25.69231 235  

9 290 x(12) 24.30769 285  

10 228 x(4) 20.69231 240  

11 216 x(2) 13.30769 274  

12 248 x(7) 12.69231 248  

13 380 x(13) 1.692308 259  

Notes: total dissolved solids (TDS); milligram per liter (mg/L) 
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Appendix O. Statistical Concepts 

O.1. Statistical Notation Used 

Throughout this document, certain mathematical symbols are reserved for quantities related to 

sample size such as the number of observations, number of years of sampling, and frequency of 

sampling within the year. Other symbols will be used to denote the sample mean, standard 

deviation, and other sample-based statistics. For reference, some of the frequently used symbols 

are summarized in Table O1. 

Unless stated otherwise, the symbols x1, x2, …, xN are used in this guidance to denote a chemical 

concentration measurement in each of N ground water samples taken at regular intervals during a 

specified period of time. The subscript indicates the order in which the sample was drawn (e.g., 

x1 is the first or oldest measurement while xN is the N
th

 or latest/newest measurement). 

Collectively, the set of values used (represented by x’s) is referred to as a data set, and in general 

xi will be used to denote the i
th

 measurement in the data set.  

Table O1. Summary of statistical notation used. 

Symbol Definition 

xi Constituent concentration measurement for the i
th
 ground water sample 

mj The number of years for which data were collected (the types of analysis discussed 
in this guidance usually will be performed with 2 to 3 full years of data) 

k The number of sample measurements per year (for quarterly data, n=4). This is also 
referred to as the number of seasons per year. 

N The total number of sample measurements (for m complete years of data, N = n x 
m). 

 
The mean (or average) of the chemical measurements in a sample of size N. 

s The standard deviation of the chemical measurements in a sample of size N. 

s
2
 The variance of the chemical measurements in a sample of size N. 

O.2. Terminology and Definitions 

A population is the set of all possible measurements of interest in the real world. For example, 

an aquifer’s nitrate concentration represents a population of all possible aliquots of water that 

could be collected from that aquifer and analyzed for nitrate.  

A sample is a set of measurements collected from the population in a manner that attempts to be 

representative and unbiased. In the preceding example, a sample might consist of 20 

measurements (the sample size) collected at randomly chosen wells from across the aquifer. 

A parameter is a numerical measure of the characteristic of interest in the population being 

sampled. Typical parameters are the population mean (), variance (
2
) or standard deviation 

(), and proportion (p). Parameter values are usually unknown.  

An estimate is a numerical measure of a parameter derived from a sample. Commonly used 

sample estimates are its mean ( x ), variance (s
2
) or standard deviation (s), and proportion (

^

p ).  

x
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Inference is the process applied to estimate a population’s parameter(s) from the sample. The 

parameters are usually the targets of our interest but, because it is impossible or prohibitive to 

collect every measurement from the population, they are usually unknown. There are two 

possible approaches to making inferences: estimation and hypothesis testing. The first answers 

the question, “what is the value of any given parameter?” and the second answers the question, 

“does the parameter meet a certain value or condition?” In ground water analysis, corresponding 

questions might be “what is the nitrate concentration in the ground water?” or “does the nitrate 

concentration meet State standards?”  

Data independence is the most basic requirement of statistical inference. All measured values in 

a sample are assumed to be random. In a time-series sense, a measurement must not depend on—

or affect—any prior or future measurement. In a spatial sense, a measurement made in one well 

must be independent of those made in other wells. Data that violate this requirement (e.g., as in 

replicate measurements collected over a short time span in the same well) carry redundant 

information that biases the calculation and/or inference of any statistical quantity based on it.  

Appendix C provides further information. 

The sample distribution is the frequency or probability of occurrence of measured values. In 

ground water analysis, two commonly encountered distributions are the normal distribution 

(bell-shaped curve) and the lognormal distribution (a right-skewed curve that takes on a normal 

shape when values are logarithmically transformed). The gamma distribution is a third type, 

representing a family of functions whose shape can vary from symmetrical to highly right-

skewed depending on its parameter values. It is a particularly useful parametric distribution 

because it can be used to represent both bell-shaped and right-skewed data sets, including 

lognormally distributed data. Its skewness and mean are described by a shape parameter (k) and a 

scale parameter (), where the distribution’s mean is defined as the product of the two,  = k*. 

Three different shapes of the gamma distribution are shown below, all having the same mean: 

 

Transformation of the data to a normal distribution via a mathematical function is commonly 

done on environmental data prior to statistical analysis. For example, by converting data values 

of a lognormally distributed data set to their logarithmic equivalents, the resulting transformed 

data set would have a normal distribution.  

Estimates derived from different samples of the same population are known as the sampling 

distribution. Estimates derived from a random sample of the population (e.g., x ) are also 

random; different samples generate different estimates. Many common statistical methods are 

based on a knowledge of, or the assumed characteristics of, the sampling distributions. One of 

the most famous is the central limit theorem, which says that the sampling distribution of the 
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mean of many independent random samples is normal regardless of the underlying distribution 

of the population that was sampled.  

O.3. Methods for Describing a Distribution 

Data need to be summarized in order to make meaningful interpretations and to pose testable 

hypotheses. Data summarization can be graphical or numerical. Graphical methods emphasize 

the shape of the distribution and numerical methods emphasize its central tendency and 

dispersion. 

Graphical Methods 

Histogram—summarizes the frequency distribution of a data set by displaying the number of 

observations that fall in defined intervals. The numbers of intervals commonly suggested is 5–

15, but the number of intervals can greatly affect the visual appearance of the distribution. The 

Y-axis can either be the number of occurrences or the percentage of total occurrences in each 

interval. Figure O1 is an example of a histogram. 
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Figure O1. Example histogram. 

Box plot—a simple, graphical representation of a data distribution. Figure O2 shows an example 

box plot. A typical box plot has the following elements: the box, representing the center half of 

the data bounded by the interquartile range (the 25% and 75% quantiles, also known as the first 

and third quartiles); the line within the box, representing the median; and the whiskers, 

representing the upper and lower adjunct values. Generally, the upper adjunct value is 1.5 times 

the interquartile range (IQR) above the 75% quantile and the lower adjunct value is 1.5 times the 

IQR below the 25% quantile. The IQR is robust to extreme values but cannot describe the overall 

nature of the dispersion. The interquantile range and quantiles are described in the paragraph on 

dispersion, below. 

Observations beyond the upper and lower adjunct values are extreme values; an extreme value in 

a data set is NOT necessarily a bad observation that needs to be removed. However, outliers can 

be discarded from the data set with adequate justification. Box plots summarize a sample’s 

central tendency, spread, skewness, and extreme values. Side-by-side box plots are a useful tool 

for comparing the distributions of different samples or groups of measurements.  
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Figure O2. Example box plot. 

Time-series plot—shows the values of observations on the y-axis versus corresponding points in 

time when they were collected on the x-axis. Equally spaced time points are desirable. A time-

series plot is useful for examining general trends over time and evaluating seasonal or cyclical 

patterns and disrupting events (such as the effect of a drought year on water quality). If the data 

points are not collected in equal time intervals, it is important to reflect the interval width 

between time points in the plot. Otherwise, the apparent visual trend could be misleading. 

Figure O3 provides an example of a time-series plot. 

 
Figure O3. Example time-series plot. 

Scatter plot—used to examine the relationship between two variables, x and y. Each point on 

the scatter plot represents a pair of measurements of x and y from the same source (e.g., 

concentrations of total dissolved solids [TDS] and nitrate-nitrogen [NO3-N] in the same well 
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sample). Usually we are interested in determining if there is a linear or nonlinear correlation 

between the two variables. Figure O4 is an example scatter plot. 

 
Figure O4. Example scatter plot. 

Numerical Methods 

Central tendency is a distribution’s center of mass. Common measures of central tendency 

include the mode, median, and mean.  

Mode—the most frequently occurring value in a data set. Distributions can have more than one 

mode (e.g., bimodal and trimodal).  

Median—the middle value of a data set. It is the 50
th 

percentile of a distribution, in which half of 

the observations are less, and half are greater, than the median value. In a data set whose N 

observations are arranged from smallest to largest, the location of the median is (N+1)/2 from the 

bottom of the list (or the average of the two middle observations).  

Mean or arithmetic mean or average—the sum of N observations divided by N. The goal of 

statistical inference is to estimate the population mean () from the sample mean. The sample 

mean ( x ) is calculated as 

N

x

x

n

i

i
 1

 

where N is total number of observations in the sample. The mean is sensitive to extreme values 

in a given data set and therefore may not always represent a distribution’s central tendency. The 

median is robust to extreme values and thus is a better measure of central tendency in skewed 

distributions. For a symmetric distribution, the mode, mean, and median are the same; for 
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skewed distributions, they are different. The graphs in Figure O5 show their relationships in 

various distributions.  

 

 

Figure O5. Mode, median, mean for various distributions (from left to right: symmetric, positively 
skewed, and negatively-skewed). 

Dispersion is the spread or variability around the central tendency. Common measures include 

the range, IQR, variance, and standard deviation. Range is the difference between the largest and 

smallest values in a data set. Although it is simple to calculate, it is least useful in describing 

dispersion since it reflects the extreme values. A better measure involves the use of quantiles. 

The p
th

 quantile of a data set is the value that p percent of the observations are less than or equal 

to. The most commonly used quantiles are the 25
th

 (Q1 or first quartile), 50
th

 (Q2 or median) and 

75
th

 (Q3 or third quartile).  

The variance of a sample data set is the average of the squared deviations of the observations 

from the mean. It is calculated as 
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The standard deviation (SD) is the square root of the variance, 
2ss  . For a normal 

distribution, the following empirical rule applies: 68% of the measurements are within one SD of 

the mean, 95% are within two SDs, and 99% are within three SDs of the mean.  

x and s or s
2
 are the most commonly used descriptive statistics for a distribution’s central 

tendency and dispersion. However, they are most appropriate for symmetric distributions 

because they are sensitive to extreme values. To adequately characterize a skewed distribution, 

the range, Q1, median, and Q3 should be reported.  

Skewness is the third moment of a distribution and measures its asymmetry, defined as 

 

Where y is the sample mean of n measurements and the yi are the sample measurements. 

Skewness is zero for a symmetric distribution and either positively skewed (skewed-to-the-right) 

or negatively skewed (skewed-to-the-left) for asymmetric distributions. In a positively skewed 

distribution, the measurements tend to cluster around smaller values and tail toward larger 

mode, median, mean
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values. The coefficient of skewness is an alternate measure of skewness, defined as 3*(mean - 

median)/std. deviation. 

Kurtosis is the fourth moment of a distribution and measures the sharpness of its peak. Kurtosis 

for a normal distribution is equal to 3.0 (zero in some statistical packages that subtract 3 from 

calculated moment to make kurtosis equal to zero for a normal distribution). A kurtosis greater 

than 3.0 (zero) indicates a distribution that is more sharply peaked than a normal distribution. 

The example in Figure O6 shows different example distributions, one with a kurtosis greater than 

1 (red,), one with zero kurtosis (blue, a normal distribution) and one with a kurtosis less than 0 

(green) (all values after subtracting 3 as just described).  

 
Figure O6. Example of three distributions with various degrees of kurtosis (peakedness). 

O.4. Inference: Decision Thresholds 

The first common type of statistical inference is designed to answer, “what is the value of a given 

parameter?” Some decision thresholds that are commonly applied in ground water analysis are 

the prediction limit, tolerance limit, and confidence limit. An upper prediction limit is the 

value, based on existing measurements and a specified level of confidence, below which the next 

k future measurements are expected to fall. An upper tolerance limit is the value defined at a 

particular confidence level for a specified percentage of all future measurements. In contrast, a 

confidence limit defines a permissible range for a specified population parameter (e.g., the 

mean) at a specified level of confidence. All three limits are calculated from historical 

background data on a constituent-by-constituent basis and are used to compare future 

measurements to determine whether the sampled population has changed (as by contamination).  

Prediction and tolerance intervals are applied for compliance sampling events in detection, 

assessment, and monitoring programs and can be used for establishing background-based ground 

water protection standards (EPA 2009). Confidence intervals are often applied for comparing 

measurements to a ground water standard that is based on a mean or median value
 
(Virginia 

DEQ 2003). Before such intervals are calculated, the background sample distribution should be 

checked for normality or lognormality, stationarity, and data independence.  



Statistical Guidance for Determining Background Ground Water Quality and Degradation 

98 

Upper prediction limit (UPL): 

UPL = Ksx   

where K is the one-sided normal tolerance factor that can be found tabulated in various ground 

water monitoring guidance documents (Gibbons 1994; EPA 2009). As Gibbons (1994) has 

pointed out, K must be calculated for a specified statistical model that includes a verification 

sampling protocol, background sample size, and k, the number of relevant
††

 future measurements 

that will be compared within a specified time period. Appendix J provides an example table of K 

factors. If any constituent of concern exceeds the UPL during the comparison time period, then 

standard practice is to conduct further sampling according to the verification sampling protocol, 

to verify the exceedance.  

Upper tolerance limit (UTL): 

UTL = Ksx   

where K is the one-sided normal tolerance factor defined for a specified fraction (the coverage, 

e.g., 95%) of all future comparisons (Gibbons 1994; EPA 2009). A specified number of 

exceedances are allowed as long as their total number is no greater than the specified percentage 

of comparisons made since the UTL was set (e.g., 5% for 95% coverage). 

Upper confidence limit (UCL):  

UCL = 
n

s
tx n ,1  

where x , n and s are the average, number and standard deviation of the background data, 

respectively, and t is the t-statistic with n-1 degree of freedom at a 1- upper-tail confidence.  

If the data are lognormally distributed, all of the above limits should be calculated on a log-

transformed scale and compared with data that have also been log-transformed.  

O.5. Inference: Hypothesis Testing 

The second common type of statistical inference is aimed at answering the question, “does the 

population parameter meet a specific condition or value?” For example, does the mean NO3-N 

concentration of the upgradient wells around a land application facility exceed the 10 milligrams 

per liter (mg/L) Idaho Ground Water Quality standard? The question is assessed by examining 

the sample characteristics relative to a statistical hypothesis concerning the population’s 

characteristics.  

A statistical hypothesis is a statement about a parameter in a population and a hypothesis test is 

a formal procedure for comparing the sample data with a hypothesis whose truth we want to 

                                                 

††
 Measurements that can be used to detect an exceedance. The number of future comparisons is defined on the basis 

of number of constituents of concern examined per well, number of wells, sampling frequency and duration of the 

comparison time period. Appendix J provides details. 
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assess
 
(Moore and McCabe 1998). The results of a test are expressed in terms of a probability 

that expresses how well the hypothesis agrees with the data.  

A hypothesis test involves four steps: 

1. State the hypotheses and confidence level: a null hypothesis (H0) is the statement 

being tested; an alternative hypothesis (HA) is the statement we will accept should H0 

be rejected. The significance of the test, , is the complement of the confidence level 

(1-) and indicates the strength of the evidence against the null hypothesis. The 

smaller the , the less the chance of falsely rejecting H0.  

2. Choose and compute the test statistic. A test statistic provides a quantifiable measure 

for deciding between H0 and HA. Some examples are the t statistic and the F statistic.  

3. Find a p-value based on the test statistic. The p-value is the lowest significance level 

at which H0 can be rejected (or the probability of obtaining a test statistic as extreme 

as or more extreme than that calculated from the sample, if H0 were true).  

4. State the conclusions based on a decision rule: (a) if the p-value is less than , then 

reject H0 and accept HA; (b) if the p-value is greater than or equal to , then we 

cannot reject H0 based on information provided in the data set. Both decisions are 

made at an  significance level (1- confidence level).  

Two types of errors are associated with any hypothesis test, a Type I (false-positive) error occurs 

when H0 is falsely rejected; a Type II (false-negative) error occurs when H0 is falsely accepted. 

For example, if the null hypothesis, H0, asserts that ground water is not contaminated, a Type I 

error would lead to the claim that contamination exists when it actually does not. A Type II error 

would lead to the claim that ground water is not contaminated when it actually is. The risk of 

committing a Type I or Type II error is  or , respectively, and they are complimentary: 

specifying a low value of  means accepting a high ;  = 0.05 is usually considered an 

acceptable trade-off between the two risks. Just as (1- ) is the confidence level of a hypothesis 

test; (1-) is the power of the test (the likelihood of identifying contamination if it is present). 

Type II errors are more likely for small sample size, so  should be considered at the time of 

sampling design. Sample size should be large enough to achieve a power of 0.8 or above. 

O.6. Sample Size 

Sample size affects both estimation and hypothesis testing. For estimation, it determines the 

estimate’s precision, and for hypothesis testing, it affects the power of the test.  

Sample size depends on the type of statistical test chosen and also on measurement precision. A 

large sample size is almost always desirable. Having many observations can make trivial 

differences detectable. The goal of determining sample size in a statistical study is to find the 

number of samples that will provide adequate yet practically feasible evidence to draw 

meaningful conclusions relative to the goals of the study. It is always good practice to state the 

problem first and then set up decision rules to address the problem.  

For ground water analysis, 8 to 12 background samples should be available for determining 

decision thresholds and for making interwell comparisons. The samples must be statistically 

independent and representative of seasonal and spatial variability at the site. For this reason, the 

8 to 12 samples preferably should be collected quarterly over a 2- to 3-year period in a well. For 

http://www.sportsci.org/resource/stats/samplesize.html
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interwell comparisons with two upgradient wells reflecting statistically indistinguishable 

chemistry, 1 year of quarterly data for each well is required (if the two wells’ chemistries are 

different, then 2 years of quarterly data at each well should be available). Statistical analysis can 

be conducted with smaller data sets, but smaller sample size usually leads to such wide 

prediction intervals that no meaningful conclusions can be drawn. The statistical requirements of 

the various analysis methods should be understood so adequate numbers of samples are collected 

prior to analyzing the data.  

O.7. Nonparametric Methods 

Before choosing nonparametric methods, it should be recognized that data sets having normal or 

lognormal distributions should be analyzed with parametric methods. Parametric methods are 

more powerful because the actual values of the measurements are used in the analysis. 

Parametric methods assume some knowledge of the shape of the distribution (i.e., normal or 

lognormal) and use the measured data values to estimate population parameters. For example, 

the t-test is a parametric method for bell-shaped distributions (either in original scale or 

transformed scale) that are centered at  with a dispersion of .  

Sample distributions that do not have normal or lognormal form can be analyzed with 

nonparametric methods, which do not require assumptions about the form of the population 

distribution. The only requirement is that the population distribution be continuously valued; 

additionally, if two populations are to be compared, then they should have the same shape.  

It is common that sample size is inadequate to determine whether a particular distribution is 

parametric, or that the number of nondetects is too large to determine the form of the 

distribution. In such cases, nonparametric methods can be used both for establishing background 

levels and for hypothesis testing. These methods do not require assumptions about the form of 

the distribution and can be used to estimate parameters or to test a hypothesis.  

Some common nonparametric methods used in ground water analysis are based on ranks of the 

data but not the actual values. Data values are ordered from lowest to highest and ranked 

according to their position in the ordered list. Commonly used rank analysis methods include the 

Wilcoxon signed-rank test (nonparametric equivalent of the one-sample t-test), Wilcoxon 

rank-sum test or Mann-Whitney’s test (nonparametric equivalent of the two-sample t-test), 

Kruskal-Wallis test (nonparametric form of the multiple-sample ANOVA test) and 

nonparametric regression. As with parametric methods, statistical independence of the 

observations is required for all nonparametric methods.  

The Kruskal-Wallis test for seasonality can be used to test for the presence of significant 

seasonal fluctuations in a time-series data set. Mann-Kendall’s test for trend shows if a 

significant secular trend exists. Sen’s test estimates the slope of the trend, regardless of the 

presence of missing observations or variable sampling time intervals. 

Nonparametric prediction and tolerance limits are based on the maximum values observed in 

N background measurements, where sample size depends on confidence level and future 

comparison strategy (Appendix I and K). Confidence level in turn is a function of the number of 

future comparisons (k) and the exceedance verification sampling plan. These methods require 
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very large background sample sizes if k is large or if  is small, so that trade-offs are usually 

required. 

Bootstrap and Jacknife resampling methods are recently developed nonparametric methods 

for making statistical inference. Basically, the original sample data set is randomly resampled 

thousands of times and statistics of interest recomputed each time. The calculated statistics from 

all resampled data sets are used to estimate the relevant sampling distributions. In the Bootstrap 

method, resampling is conducted with replacement (of size N, the original sample size). In the 

Jacknife method, resampling systematically leaves out one value from the original data set each 

time (sample size = N-1). Unfortunately, small sample size is a major limitation because the 

resampling method assumes that the original data set is representative of the underlying 

population. These methods are computer-intensive but demonstrate growing potential for 

environmental statistical analysis. Their technical aspects are beyond the scope of this document. 

The Idaho Department of Environmental Quality leaves it to the regulated entity to choose the 

methods that best fulfill the objectives of the statistical analysis but retains the right to ask for 

alternative methods to be used if they prove to be more appropriate.  
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Appendix P. Summary of Revisions 

Updates 

Figure 3—Modify flow chart logic for handling nondetects to conform to EPA’s guidance. 

Figure 4—Statistical assumptions must be consistent with the site conceptual model. 

Section 4.4.1—Included Upper Simultaneous Limits, their definition, and usage. 

Section 5.2.3—Clarified verification versus confirmation resampling data. 

Appendix B, Figure. B1—Replaced with ProUCL box plot example. 

Appendix D—Importance of distribution; rearranged Shapiro-Wilk calculation and added 

ProUCL examples. 

Appendix E.3—Removing seasonality reduces data variance and lowers decision thresholds. 

Appendix F.2—This section was deleted in favor of a more illustrative ProUCL example. 

Appendix L—Corrections and added interim thresholds for trends. 

Additions 

Section 3.4.1—Limited Annual Sampling (4 equally spaced samples during the sampling 

season). 

Section 4.4.1—Interwell Tolerance Limits (added discussion on Interwell UTL). 

Section 4.4.2—Interwell Prediction Limits (clarified to maintain consistency with EPA 

guidance). 

Section 4.4.3—Interwell Simultaneous Limits (to maintain consistency with EPA guidance). 

Section 4.5—Verification Resampling (clarifies recommended “1-of-3” retesting process).  

Section 4.6—Trending Data (detrending and interim decision threshold procedures). 

Appendix D—Figure D1 (formalize the decision logic for choosing a distribution). 

Appendix D—Two ProUCL examples (do not use lognormal option for strongly skewed data). 

Appendix F.2—ProUCL example (removing a secular trend and its effect on variance). 

Appendix K.3—ProUCL example (UPLs, UTLs, and USLs calculated for near-normal data). 

Appendix K.4—ProUCL example (impact on decision thresholds of strongly skewed data). 

Appendix L.4—Added control chart process (to estimate decision threshold in trending data). 

Appendix L, Figure. L.3—Proposed decision logic (to estimate interim threshold for upward data 

trend). 

Appendix O—Defined the gamma distribution (with examples). 


